Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 11, 2015 - Issue 11
1,659
Views
76
CrossRef citations to date
0
Altmetric
Articles

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams

, , , &
Pages 1399-1419 | Received 12 May 2014, Accepted 28 Jul 2014, Published online: 07 Oct 2014

References

  • ACI Committee 318. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. Farmington Hills, MI: American Concrete Institute.
  • Adebar, P., & Collins, M.P. (1996). Shear strength of members without transverse reinforcement. Canadian Journal of Civil Engineering, 23, 30–41.
  • Anderson, N.S., & Ramirez, J.A. (1989). Detailing of stirrup reinforcement. ACI Structural Journal, 86, 507–515.
  • Angelakos, D., Bentz, E.C., & Collins, M.P. (2001). Effect of concrete strength and minimum stirrups on shear strength of large members. ACI Structural Journal, 98, 290–300.
  • Bairán, J.M., & Marí, A.R. (2006). Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. part 1: Theoretical formulation. Computers and Structures, 84, 2254–2263. doi:10.1016/j.compstruc.2006.08.036.
  • Bentz, E. (2010). MC2010: Shear strength of beams and implications of the new approaches. Fib Bulletin 57: Shear and Punching Shear in RC and FRC Elements, Salò (Italy). fib Bulletin, 57, 15–30.
  • Bhal, N.S. (1968). The effect of beam depth on the shear capacity of single span reinforced concrete beams with and without shear reinforcement (Ph.D. Thesis 124 pp.). University of Stuttgart (in German).
  • Bresler, B., & Scordelis, A.C. (1963). Shear strength of reinforced concrete beams. ACI Journal, 60, 51–74.
  • Bresler, B., & Scordelis, A.C. (1966). Shear strength of reinforced concrete beams – Series III. SESM Report (Structural Engineering and Structural Mechanics, UC/SESM-65/10). Berkeley: University of California.
  • Campana, S., Ruiz, M.F., Anastasi, A., & Muttoni, A. (2013). Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Magazine of Concrete Research, 65, 386–404. doi:10.1680/macr.12.00142.
  • Carmona, J.R., & Ruiz, G. (2014). Bond and size effects on the shear capacity of RC beams without stirrups. Engineering Structures, 66, 45–56. doi:10.1016/j.engstruct.2014.01.054.
  • Ceresa, P., Petrini, L., & Pinho, R. (2007). Flexure-shear fiber beam-column elements for modeling frame structures under seismic loading – State of the art. Journal of Earthquake Engineering, 11(Suppl. 1), 46–88. doi:10.1080/13632460701280237.
  • Choi, K.K., Park, H.G., & Wight, J.K. (2007). Unified shear strength model for reinforced concrete beams - Part I: Development. ACI Structural Journal, 104, 142–152.
  • Cladera, A., & Marí, A.R. (2004a). Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: Beams without stirrups. Engineering Structures, 26, 917–926. doi:10.1016/j.engstruct.2004.02.010.
  • Cladera, A., & Marí, A.R. (2004b). Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: Beams with stirrups. Engineering Structures, 26, 927–936. doi:10.1016/j.engstruct.2004.02.011.
  • Cladera, A., & Marí, A.R. (2005). Experimental study on high-strength concrete beams failing in shear. Engineering Structures, 27, 1519–1527. doi:10.1016/j.engstruct.2005.04.010.
  • Cladera, A., & Marí, A.R. (2006). Shear design of prestressed and reinforced concrete beams. Magazine of Concrete Research, 58, 713–722. doi:10.1680/macr.2006.58.10.713.
  • Cladera, A., & Marí, A.R. (2007). Shear strength in the new eurocode 2. A step forward? Structural Concrete, 8, 57–66. doi:10.1680/stco.2007.8.2.57.
  • Collins, M.P., Bentz, E.C., Sherwood, E.G., & Xie, L. (2008). An adequate theory for the shear strength of reinforced concrete structures. Magazine of Concrete Research, 60, 635–650.
  • Collins, M.P., Bentz, E.C., & Sherwood, E.G. (2008). Where is shear reinforcement required? Review of research results and design procedures. ACI Structural Journal, 105, 590–600.
  • Collins, M.P., & Kuchma, D. (1999). How safe are our large, lightly reinforced concrete beams, slabs, and footings? ACI Structural Journal, 96, 482–490.
  • Desai, S.B. (2004). Influence of constituents of concrete on its tensile strength and shear strength. ACI Structural Journal, 101, 29–38.
  • Elzanaty, A.H., Nilson, A.H., & Slate, F.O. (1986). Shear capacity of reinforced concrete beams using high-strength concrete. Journal of the American Concrete Institute, 83, 290–296.
  • Etxeberria, M., Marí, A.R., & Vázquez, E. (2007). Recycled aggregate concrete as structural material. Materials and Structures/Materiaux Et Constructions, 40, 529–541. doi:10.1617/s11527-006-9161-5.
  • European Committee for Standardization (CEN). (2002). Eurocode 2: Design of concrete structures: Part 1: General rules and rules for buildings, Brussels, Belgium.
  • Fédération Internationale du Béton. (2013). fib Model Code for Concrete Structures 2010, Lausanne, Switzerland: Ernst & Sohn.
  • Fédération Internationale du Béton (fib) Task Group 8.2. (2008). Constitutive modelling of high strength/high performance concrete, fib Bulletin 42. Lausanne, Switzerland: Fédération Internationale du Béton.
  • Ferreira, D., Bairán, J., & Marí, A. (2013). Numerical simulation of shear-strengthened RC beams. Engineering Structures, 46, 359–374. doi:10.1016/j.engstruct.2012.06.050.
  • Ferreira, D., Oller, E., Bairán, J., Carrascón, S., & Marí, A.R. (2014). Influence of the fines content in the flexural and shear structural response of reinforced concrete beams. Informes De La Construcción, Accepted for publication (ref IC 14039).
  • Frosch, R.J. (2000). Behavior of large-scale reinforced concrete beams with minimum shear reinforcement. ACI Structural Journal, 97, 814–820.
  • González-Fonteboa, B., & Martínez-Abella, F. (2007). Shear strength of recycled concrete beams. Construction and Building Materials, 21, 887–893. doi:10.1016/j.conbuildmat.2005.12.018.
  • Johnson, M.K., & Ramirez, J.A. (1989). Minimum shear reinforcement in beams with higher strength concrete. ACI Structural Journal, 86, 376–382.
  • Karayannis, C.G., & Chalioris, C.E. (2013). Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Construction and Building Materials, 46, 86–97.
  • Karayiannis, C.G., & Chalioris, C.E. (1999). Experimental investigation of the influence of stirrups on the shear failure mechanism of reinforced concrete beams. Proceedings of the 13th Hellenic Conference on Concrete, Vol. 1 (pp. 131–141), Rethymnon, Greece.
  • Khuntia, M., & Stojadinovic, B. (2001). Shear strength of reinforced concrete beams without transverse reinforcement. ACI Structural Journal, 98, 648–656.
  • Kong, P.Y.L., & Rangan, B.V. (1998). Shear strength of high-performance concrete beams. ACI Structural Journal, 95, 677–688.
  • Kotsovos, M.D., Bobrowski, J., & Eibl, J. (1987). Behaviour of reinforced concrete T-beams in shear. Structural Engineer, Part B: R&D Quarterly, 65 B(1), 1–10.
  • Krefeld, W.J., & Thurston, C.W. (1966). Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams. ACI Journal, 63, 451–476.
  • Kupfer, H.B., & Gerstle, K.H. (1973). Behavior of concrete under biaxial stresses. Journal of the Engineering Mechanics Division, 99, 853–866.
  • Leonhardt, F., & Walther, R. (1962). Shear tests on single span reinforced concrete beams with and without shear reinforcement for determining the shear bearing capacity and the upper limit of shear stress. Issue 151, Deutch Committee of Reinforced concrete, 66. (in German).
  • Lubell, A., Sherwood, T., Bentz, E., & Collins, M. (2004). Safe shear design of large, wide beams. Concrete International, 26, 66–78.
  • Marí, A., Cladera, A., Oller, E., & Bairán, J. (2014). Shear design of FRP reinforced concrete beams without transverse reinforcement. Composites Part B: Engineering, 57, 228–241. doi:10.1016/j.compositesb.2013.10.005.
  • Marti, P. (1999). How to treat shear in structural concrete. ACI Structural Journal, 96, 408–414.
  • Mattock, A.H., & Wang, Z. (1984). Shear strength of reinforced concrete members subject to high axial compressive stress. Journal of the American Concrete Institute, 81, 287–298.
  • McGormley, J.C., Cleary, D.B., & Ramirez, J.A. (1996). The performance of epoxy-coated shear reinforcement. ACI Structural Journal, 93, 531–537.
  • Mohr, S., Bairán, J.M., & Marí, A.R. (2010). A frame element model for the analysis of reinforced concrete structures under shear and bending. Engineering Structures, 32, 3936–3954. doi:10.1016/j.engstruct.2010.09.005.
  • Mphonde, A.G., & Frantz, G.C. (1985). Shear tests of high- and low-strength concrete beams with stirrups. High-Strength Concrete, SP–87, American Concrete Institute, Farmington Hills, MI, 179–196.
  • Muttoni, A. (2008). Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI Structural Journal, 105, 440–450.
  • Muttoni, A., & Ruiz, M.F. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 105, 163–172.
  • Navarro-Gregori, J., Miguel-Sosa, P., Fernández-Prada, M.A., & Filippou, F.C. (2007). A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading. Engineering Structures, 29, 3404–3419. doi:10.1016/j.engstruct.2007.09.001.
  • Nielsen, M., & Hoang, L. (1999). Limit analysis and concrete plasticity. Boca Raton, FL: CRC Press.
  • Ozcebe, G., Ersoy, U., & Tankut, T. (1999). Evaluation of minimum shear reinforcement requirements for higher strength concrete. ACI Structural Journal, 96, 361–368.
  • Park, H.G., Choi, K.K., & Wight, J.K. (2006). Strain-based shear strength model for slender beams without web reinforcement. ACI Structural Journal, 103, 783–793.
  • Park, H.G., Kang, S., & Choi, K.K. (2013). Analytical model for shear strength of ordinary and prestressed concrete beams. Engineering Structures, 46, 94–103. doi:10.1016/j.engstruct.2012.07.015.
  • Petrangeli, M., Pinto, P.E., & Ciampi, V. (1999). Fiber element for cyclic bending and shear of RC structures. I: Theory. Journal of Engineering Mechanics, 125, 994–1001. doi:10.1061/(ASCE)0733-9399(1999)125:9(994).
  • Placas, A., & Regan, P.E. (1971). Shear failure of reinforced concrete beams. Journal of American Concrete Institute, 68, 763–773.
  • Recupero, A., D'Aveni, A., & Ghersi, A. (2003). N–M–V interaction domains for box and I-shaped reinforced concrete members. ACI Structural Journal, 100, 113–119. doi:10.14359/12445.
  • Reineck, K., Kuchma, D.A., Kim, K.S., & Marx, S. (2003). Shear database for reinforced concrete members without shear reinforcement. ACI Structural Journal, 100, 240–249.
  • Reineck, K. (1991). Ultimate shear force of structural concrete members without transverse reinforcement derived from a mechanical model. ACI Structural Journal, 88, 592–602.
  • Richart, F.E. (1927). An investigation of web stresses in reinforced concrete beams. Bulletin 166. Engineering Experiment Station, Urbana, IL, USA: University of Illinois.
  • Roller, J.J., & Russell, H.G. (1990). Shear strength of high-strength concrete beams with web reinforcement. ACI Structural Journal, 87, 191–198.
  • Ruddle, M.E., Rankin, G.I.B., & Long, A.E. (1999). Mohr approach to prediction of beam shear strength. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 134, 363–372.
  • Sagaseta, J., & Vollum, R.L. (2011). Influence of beam cross-section, loading arrangement and aggregate type on shear strength. Magazine of Concrete Research, 63, 139–155. http://infoscience.epfl.ch/record/163648/files/Sagaseta11.pdf.
  • Saritas, A., & Filippou, F.C. (2009). Inelastic axial–flexure–shear coupling in a mixed formulation beam finite element. International Journal of Non-Linear Mechanics, 44, 913–922. doi:10.1016/j.ijnonlinmec.2009.06.007.
  • Sarsam, K.F., & Al-Musawi, J.M.S. (1992). Shear design of high- and normal strength concrete beams with web reinforcement. ACI Structural Journal, 89, 658–664.
  • Severcan, M.H. (2012). Prediction of splitting tensile strength from the compressive strength of concrete using GEP. Neural Computing and Applications, 21, 1937–1945. doi:10.1007/s00521-011-0597-3.
  • Spinella, N., Colajanni, P., & Recupero, A. (2010). Simple plastic model for shear critical SFRC beams. Journal of Structural Engineering, 136, 390–400. doi:10.1061/(ASCE)ST.1943-541X.0000127.
  • Swamy, R., & Qureshi, S. (1974). An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Matériaux Et Construction, 7, 181–189.
  • Swamy, R.N., & Andriopoulos, A.D. (1974). Contribution of aggregate interlock and dowel forces to the shear resistance of reinforced beams with web reinforcement. Shear in Reinforced Concrete, SP–42, American Concrete Institute, Farmington Hills, MI,129–166.
  • Tan, K.-H., Teng, S., Kong, F.-K., & Lu, H.-Y. (1997). Main tension steel in high strength concrete deep and short beams. ACI Structural Journal, 94, 752–768.
  • Tompos, E.J., & Frosch, R.J. (2002). Influence of beam size, longitudinal reinforcement, and stirrup effectiveness on concrete shear strength. ACI Structural Journal, 99, 559–567.
  • Tureyen, A.K., & Frosch, R.J. (2003). Concrete shear strength: Another perspective. ACI Structural Journal, 100, 609–615.
  • Tureyen, A.K., Wolf, T.S., & Frosch, R.J. (2006). Shear strength of reinforced concrete T-beams without transverse reinforcement. ACI Structural Journal, 103, 656–663.
  • Vecchio, F.J., & Collins, M.P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Journal, 83, 219–231.
  • Vecchio, F.J. (2000). Disturbed stress field model for reinforced concrete: Formulation. Journal of Structural Engineering, 126, 1070–1077.
  • Vecchio, F.J. (2001). Disturbed stress field model for reinforced concrete: Implementation. Journal of Structural Engineering, 127, 12–20.
  • Wittmann, F. (2002). Crack formation and fracture energy of normal and high strength concrete. Sadhana, 27, 413–423.
  • Wolf, T.S., & Frosch, R.J. (2007). Shear design of prestressed concrete: A unified approach. Journal of Structural Engineering, 133, 1512–1519. doi:10.1061/(ASCE)0733-9445(2007)133:11(1512).
  • Yoon, Y.-S., Cook, W.D., & Mitchell, D. (1996). Minimum shear reinforcement in normal, medium, and high-strength concrete beams. ACI Structural Journal, 93, 576–584.
  • Yu, Q., & Bažant, Z.P. (2011). Can stirrups suppress size effect on shear strength of RC beams? Journal of Structural Engineering, 137, 607–617. doi:10.1061/(ASCE)ST.1943-541X.0000295.
  • Zanuy, C., Albajar, L., & Gallego, J.M. (2011). Toward modelling the shear fatigue behaviour of reinforced concrete beams without shear reinforcement. 7th International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures AMCM, Krakow, Poland.
  • Zararis, P.D. (2003). Shear strength and minimum shear reinforcement of reinforced concrete slender beams. ACI Structural Journal, 100, 203–214.
  • Zararis, P.D., & Papadakis, G. (1999). Influence of the arrangement of reinforcement on the shear strength of RC beams. Proceedings of the 13th Hellenic Conference on Concrete, 1, 110–119, Rethymnon, Greece.
  • Zararis, P.D., & Papadakis, G.C. (2001). Diagonal shear failure and size effect in RC beams without web reinforcement. Journal of Structural Engineering, 127, 733–742. doi:10.1061/(ASCE)0733-9445(2001)127:7(733).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.