Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 12, 2016 - Issue 11
1,583
Views
8
CrossRef citations to date
0
Altmetric
Articles

A review of experimental investigations and assessment methods for masonry arch bridges

, &
Pages 1439-1464 | Received 11 Jun 2015, Accepted 12 Nov 2015, Published online: 04 Feb 2016

References

  • AlShebani, M., & Sinha, S. (1999). Stress-strain characteristics of brick masonry under uniaxial cyclic loading. Journal of Structural Engineering, 125, 600–604. doi:10.1061/(ASCE)0733-9445(1999)125:6(600)
  • Aprile, A., Benedetti, A., & Grassucci, F. (2001). Assessment of cracking and collapse for old brick masonry columns. Journal of Structural Engineering, 127, 1427–1435. doi:10.1061/(ASCE)0733-9445(2001)127:12(1427)
  • Audenaert, A., Fanning, P., Sobczak, L., & Peremans, H. (2008). 2-D analysis of arch bridges using an elasto-plastic material model. Engineering Structures, 30, 845–855. doi:10.1016/j.engstruct.2007.05.018
  • Barbi, L., Briccoli Bati, S., & Ranocchiai, G. (2002). Mechanical properties of ancient bricks: Statistical analysis of data. Paper presented at the 7th International Seminar on Structural Masonry for Developing Countries, Belo Horizonte, Brazil.
  • Barlow, W. H. (1846). On the Existence (Practically) of the Line of Equal Horizont. 5 Minutes of Proceedings of the Institution of Civil Engineers, United Kingdom, 162–182.
  • Bergamo, O., Campione, G., Donadello, S., & Russo, G. (2015). In-situ NDT testing procedure as an integral part of failure analysis of historical masonry arch bridges. Engineering Failure Analysis, 57, 31–55. doi:10.1016/j.engfailanal.2015.07.019
  • Bićanić, N., Stirling, C., & Pearce, C. J. (2003). Discontinuous modelling of masonry bridges. Computational Mechanics, 31, 60–68. doi:10.1007/s00466-002-0393-0
  • Block, P., DeJong, M., & Ochsendorf, J. (2006). As hangs the flexible line: Equilibrium of masonry arches. Nexus Network Journal, 8, 9–19. doi:10.1007/s00004-006-0015-9
  • Brencich, A., & Felice, G. (2009). Brickwork under eccentric compression: Experimental results and macroscopic models. Construction and Building Materials, 23, 1935–1946. doi:10.1016/j.conbuildmat.2008.09.004
  • Brencich, A., & De Francesco, U. (2004). Assessment of multispan masonry arch bridges. I: Simplified approach. Journal of Bridge Engineering, 9, 582–590. doi:10.1061/(ASCE)1084-0702(2004)9:6(591)
  • Brencich, A., & Gambarotta, L. (2005). Mechanical response of solid clay brickwork under eccentric loading. Part I: Unreinforced masonry. Materials and Structures, 38, 257–266. doi:10.1007/BF02479351
  • Brencich, A., & Morbiducci, R. (2007). Masonry arches: Historical rules and modern mechanics. International Journal of Architectural Heritage, 1, 165–189. doi:10.1080/15583050701312926
  • Brencich, A., & Sabia, D. (2007). Tanaro bridge: Dynamic tests on a couple of spans. Journal of Bridge Engineering, 12, 662–665. doi:10.1061/(ASCE)1084-0702(2007)12:5(662)
  • Callaway P., Gilbert M., & Smith C. C. (2012). Influence of backfill on the capacity of masonry arch bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 165, 147–158. doi:10.1680/bren.11.00038
  • Casas, J. R. (2011). Reliability-based assessment of masonry arch bridges. Construction and Building Materials, 25, 1621–1631. doi:10.1016/j.conbuildmat.2010.10.011
  • Castilian, C.A. (1875). New theory about the balance of elastic systems. Memory of the Royal Academy of Sciences in Turin, 11, 127–286.
  • Castigliano, A. (1996). The theory of equilibrium of elastic systems and its applications. New York, NY: Dover Publications.
  • Cavaleri, L., Failla, A., La Mendola, L., & Papia, M. (2005). Experimental and analytical response of masonry elements under eccentric vertical loads. Engineering Structures, 27, 1175–1184. doi:10.1016/j.engstruct.2005.02.012
  • Cavicchi, A., & Gambarotta, L. (2005). Collapse analysis of masonry bridges taking into account arch-fill interaction. Engineering Structures, 27, 605–615. doi:10.1016/j.engstruct.2004.12.002
  • Cavicchi, A., & Gambarotta, L. (2007). Lower bound limit analysis of masonry bridges including arch-fill interaction. Engineering Structures, 29, 3002–3014. doi:10.1016/j.engstruct.2007.01.028
  • Choo, B. S., Coutie, M. G., & Gong, N. G. (1990). The application of the finite element method to the study of cracking in masonry arch bridges. Paper presented at the International conference on applied stress analysis, Nottingham, UK.
  • Clemente, P. (1998). Introduction to dynamics of stone arches. Earthquake Engineering and Structural Dynamics, 27, 513–522. doi:10.1002/(SICI)1096-9845(199805)27:5<513:AID-EQE740>3.0.CO;2-O
  • Crisfield, M. A., & Packham, A. J. (1987). A mechanism program for computing the strength of masonry arch bridges. TRRL Research Report. Civil-Comp 85. Proceedings of the Second International Conference on Civil and Structural Engineering Computing held at the Institution of Civil Engineers, London, 3-5 December 1985, Volume 2.
  • Crisfield, M. A. (1985). Computer methods for the analysis of masonry arches. Paper presented at the 2nd international conference on civil and structural computing, London, UK.
  • Crisfield, M.A. (1987). Plasticity computations using the Mohr—Coulomb yield criterion. Engineering Computations, 4, 300–308.
  • Cundall, P. A., & Hart, R. D. (1989). Numerical modelling of discontinua. Paper presented at the 1st US conference of the Discrete element methods, Colorado, USA.
  • Cundall, P. A. (1971). A computer model for simulating progressive large-scale movements in blocky rock systems. Paper presented at the Symposium on Rock Fracture (ISRM), Nancy, France.
  • Curioni, G. (1874). L’arte del fabbricare, ossia corso complete di istituzioni teorico-pratiche [The art of manufacturing. Course complete with institutions theoretical and practical]. Torino: Negro (in Italian).
  • Da Porto, F., Tecchio, G., Zampieri, P., Modena, C., & Prota, A. (2015). Simplified seismic assessment of railway masonry arch bridges by limit analysis. Structure and Infrastructure Engineering, 11, 415–442. doi:10.1080/15732479.2015.1031141
  • Darvey, N. (1953). Technical report tests on road bridges. London: National Building Study.
  • Davies, S. R. (1998). MARCH – A computer program for the assessment of masonry arches. Paper presented at the 4th International conference Structural Faults and Repair, London, UK.
  • de Felice, G., & De Santis, S. (2010). Experimental and numerical response of arch bridge historic masonry under eccentric loading. International Journal of Architectural Heritage, 4, 115–137. doi:10.1080/15583050903093886
  • de Felice, G., & Mauro, A. (2010). On overturning of the façade in churches with single nave: Some case studies from L’Aquila, Italy, 2009 earthquake. Advanced Materials Research, 133–134, 807–812. doi:10.4028/www.scientific.net/AMR.133-134.807
  • de Felice, G. (2009). Assessment of the load-carrying capacity of multi-span masonry arch bridges using fibre beam elements. Engineering Structures, 31, 1634–1647. doi:10.1016/j.engstruct.2009.02.022
  • De Lorenzis, L., DeJong, M. J., & Ochsendorf J. (2007). Failure of masonry arches under impulse base motion. Earthquake Engineering and Structural Dynamics, 36, 2119–2136. doi:10.1002/eqe.719
  • De Luca, A., Giordano, A., & Mele, E. (2004). A simplified procedure for assessing the seismic capacity of masonry arches. Engineering Structures, 26, 1915–1929. doi:10.1016/j.engstruct.2004.07.003
  • De Santis, S., & de Felice, G. (2014a). A fibre beam based approach for the evaluation of the seismic capacity of masonry arches. Earthquake Engineering and Structural Dynamics, 43, 1661–1681.10.1002/eqe.v43.11
  • De Santis, S., & de Felice, G. (2014b). Overview of railway masonry bridges with a safety factor estimate. International Journal of Architectural Heritage, 8, 452–474. doi:10.1002/eqe.2416
  • De Santis, S., & Tomor, A. K. (2013). Laboratory and field studies on the use of acoustic emission for masonry bridges. NDT & E International, 55, 64–74. doi:10.1016/j.ndteint.2013.01.006
  • De Santis, S. (2015). Load carrying capacity and seismic behaviour of masonry arch bridges. From experimental testing to structural assessment. Saarbrücken: Scholars’ Press. ISBN 978-3-639-51179-6.
  • DeJong, M. J., De Lorenzis, L., Adams, S., & Ochsendorf, J. A. (2008). Rocking stability of masonry arches in seismic regions. Earthquake Spectra, 24, 847–865. doi:10.1193/1.2985763
  • Dimitri, R., De Lorenzis, L., & Zavarise, G. (2011). Numerical study on the dynamic behavior of masonry columns and arches on buttresses with the discrete element method. Engineering Structures, 33, 3172–3188. doi:10.1016/j.engstruct.2011.08.018
  • Donghi, D. (1905). Il Manuale dell’Architetto. Torino: Detroit Publishing Company (in Italian).
  • Fairfield, C. A., & Ponniah, D. A. (1994). Model tests to determine the effect of fill on buried structures. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 104, 471–482. doi:10.1680/istbu.1994.27205
  • Fairfield, D., & Sibbald, A. (1997). Experimental validation of flat arch analysis techniques. Paper presented at the 7th international conference on structural faults and repair, Edinburgh, UK.
  • Fanning, P., & Boothby, T. E. (2001). Three-dimensional modelling and full-scale testing of stone arch bridges. Computers and Structures, 79, 2645–2662. doi:10.1016/S0045-7949(01)00109-2
  • Fanning, P., Sobczak, L., Boothby, T. E., & Salomoni, V. (2005). Load testing and model simulations for a stone arch bridge. Journal of Bridge Engineering, 1, 367–378. doi:10.1080/15732480500453532
  • Fanning, P., Boothby, T. E., & Roberts, B. J. (2001). Longitudinal and transverse effects in masonry arch assessment. Construction and Building Materials, 15, 51–60. doi:10.1016/S0950-0618(00)00069-6
  • Favre, R., & de Castro san Roman, J. (2001). The arch: Enduring and endearing. Paper presented at the 3rd International Conference on Arch Bridges, Paris, France.
  • Francis, A. J., Horman, C. B., & Jerrems, L. E. (1971). The effect of joint thickness and other factors on the compressive strength of brickwork. Paper presented at the 2nd International Brick/Block Masonry Conference, Stoke on Kent, UK.
  • Gago, A. S., Alfaiate, J., & Lamas, A. (2011). The effect of the infill in arched structures: Analytical and numerical modelling. Engineering Structures, 33, 1450–1458. doi:10.1016/j.engstruct.2010.12.037
  • Garity, S. W., & Toropova, I. L. (2001). A finite element study of a single span masonry arch bridge with near surface reinforcement. Paper presented at the 3rd international arch bridge conference, Paris, France.
  • Gay, C. (1924). Ponts en Maconnerie. Encyclopedie de génie civil et des travaux publics [Masonry bridges . Civil engineering and Encyclopedia]. Paris: J. B. Bailliére et fils (in French).
  • Giamundo, V., Sarhosis, V., Lignola, G. P., Sheng, Y., & Manfredi, G. (2014). Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Engineering Structures, 73, 160–169. doi:10.1016/j.engstruct.2014.05.007
  • Gibbons, N., & Fanning, P. J. (2012). Rationalising assessment approaches for masonry arch bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 165, 169–184. doi:10.1680/bren.11.00023
  • Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: State-of-the-art and recent developments. Paper presented at the 5th ARCH International Conference on Arch Bridges, Madeira, Portugal.
  • Gilbert, M., Smith, C., Hawksbee, S. G. M., & Melbourne, C. (2013). Modelling soil-structure interaction in masonry arch bridges. Paper presented at the 7th International Arch Bridges Conference, Split, Croatia.
  • Gilbert, M. (1993). The behaviour of masonry arch bridges containing defects. Manchester, NH: University of Manchester.
  • Gilbert, M., Smith, C., Melbourne, C., & Wang, J. (2006). An experimental study of soil-arch interaction in masonry arch bridges. Paper presented at the 3rd IABMAS Conference, Porto, Portugal.
  • Gong, N. G. (1992). Finite element analysis of masonry arch bridges ( PhD thesis, University of Nottingham, UK).
  • Hamid, A. A., & Drysdale, R. G. (1982). Proposed failure criteria for brick masonry under combined stresses. Paper presented at the 2nd North American Masonry Conference, College Park, USA.
  • Hart, R. D., Cundall, P. A., & Lemos, J. V. (1998). Formulation of a three dimensional distinct element model – Part II: Mechanical calculations. International Journal of Rock Mechanics and Mining Sciences, 25, 117–125. doi:10.1016/0148-9062(88)92294-2
  • Harvey, W. J. (2012). Stiffness and damage in masonry bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 165, 127–134. doi:10.1680/bren.11.00032
  • Harvey, W. J., Smith, F. W., & Wang, X. (1994). Arch fill interaction in masonry bridges-an experimental study. Paper presented at the centenary year bridge conference, Cardiff, UK.
  • Harvey, W. J., Vardy, A. E., Craig, R. F., & Smith, F. W. (1989). Load tests on a full-scale model four metre span masonry arch bridge. London: HMSO.
  • Harvey, W. J. (2013). A spatial view of the flow of force in masonry bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 166, 51–58. doi:10.1680/bren.11.00026
  • Helmerich, R., Niederleithinger, E., Trela, C., Bień, J., Kamiński, T., & Bernardini, G. (2012). Multi-tool inspection and numerical analysis of an old masonry arch bridge. Structure and Infrastructure Engineering, 8, 27–39. doi:10.1080/15732471003645666
  • Hendry, A. W. (1998). Structural Masonry. Macmillan: Palgrave Macmillan.10.1007/978-1-349-14827-1
  • Hendry, A. W., Davies, S. R., & Royles, R. (1985). Test on stone masonry arch at Bridgemill-Girvan (Contractor Rep. 7). Crowthorne: Department of Transport, TRL.
  • Hendry, A. W., Davies, S. R., Royles, R., Ponniah, D. A., Forde, M. C., & Komeyli–Birjandi, F. (1986). Test on masonry arch bridge at Bargower ( Contract Report 26). Crowthorne: Transport and Road Research Laboratory.
  • Heyman, J. (1982). The masonry arch. Cambridge: Cambridge University Press.
  • Heyman, J. (1998). Structural analysis: a historical approach. Cambridge: Cambridge University Press.
  • Heyman, J. (1997). The stone skeleton. Cambridge: Cambridge University Press.
  • Highway Agency. (2001). Highway structures: Inspection and maintenance. Assessment. Assessment of highway bridges and structures. DMRB Volume 3 Section 4 Part 4 (BA 16/97). London: HMSO.
  • Hodgson J. A. (1996). The behaviour of skewed masonry arch bridges ( UK: PhD thesis: University of Salford).
  • Hughes, T.G., Davies, M.C.R., & Taunton, P.R. (1998a). Small scale modelling of brickwork arch bridges using a centrifuge. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 128, 49–58.
  • Hughes, T. G., Davies, M. C. R., & Taunton P. R. (1998b). The influence of soil and masonry type on the strength of masonry arch bridges. Paper presented at the 2nd International Conference on Arch Bridges, Venice, Italy.
  • Hulet, K. M., Smith, C. C., Gibert, M. (2006). Load-carrying capacity of flooded masonry arch bridges. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 159, 97–103. doi:10.1680/bren.2006.159.3.97
  • Invernizzi, S., Lacidogna, G., Manuello, A., & Carpinteri, A. (2011). AE monitoring and numerical simulation of a two-span model masonry arch bridge subjected to pier scour. Strain, 47, 158–169. doi:10.1111/j.1475-1305.2010.00752.x
  • ITASCA. (2004). UDEC 4.0 universal distinct element code “User’s guide”. Minneapolis, MN: ITASCA Consulting Group.
  • Jean, M. (1999). The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering, 177, 235–257. doi:10.1016/S0045-7825(98)00383-1
  • Jorini, A. F. (1918). Teoria e pratica della costruzione dei ponti [Theory and practice of building bridges]. Milano: Ulrico Hoepli Editore (in Italian).
  • Kaminski T., & Bien, J. (2013). Application of kinematic method and FEM in analysis of ultimate load bearing capacity of damaged masonry arch bridges. Paper presented at the 11th International Conference on Modern Building Materials, Structures and Techniques, MBMST, 16–17 May 2013, Vilnius, Lithuania, 2013.
  • Kishen, J. M. C., Ramaswamy, A., & Manohar, C. S. (2013). Safety assessment of a masonry arch bridge: Field testing and simulations. Journal of Bridge Engineering, 18, 162–171. doi:10.1061/(ASCE)BE.1943-5592.0000338
  • Kooharian, A. (1952). Limit analysis of voussoir (segmental) and concrete arches. Journal American Concrete Institute, 24, 317–328.
  • Lemos, J. V. (1998). Discrete element modelling of the seismic behaviour of stone masonry arches. In G. N. Pande, J. Middleton, & B. Kralj (Eds.), Computer methods in structural masonry 4. London: E&FN Spon. http://www.tandfonline.com/doi/abs/10.1080/15583050601176868?journalCode=uarc20
  • Lemos, J. V. (2001). Modelling the behaviour of a stone masonry arch structure under cyclic loads. Paper presented at the computer methods in structural masonry conference, Swansea, UK.
  • Lemos, J. V. (2007). Discrete element modeling of masonry structures. International Journal of Architectural Heritage, 1, 190–213. doi:10.1080/15583050601176868
  • LimitState. (2014). RING manual version 3.1.b. Sheffield: LimitState.
  • Liversley, R. K. (1987). Limit analysis of structures formed from rigid blocks. International Journal for Numerical Methods in Engineering, 12, 1853–1871. doi:10.1002/nme.1620121207
  • Lourenço, P. B. (1996). Computational strategies for masonry structures ( PhD thesis, Delft University, The Netherlands).
  • Ma, M. A., Pan, A. D. E., Luan, M., & Gebara, J. M. (1996). Seismic analysis of stone arch bridges using discontinuous deformation analysis. Paper presented at the 11th International conference on earthquake engineering, Amsterdam, The Netherlands.
  • Mann, W., & Muller, H. (1982). Failure of shear stressed masonry. An enlarged theory, tests and application to shear walls. Proceedings of the British Ceramic Society, 30, 223–235.
  • Martin-Caro, J. A. (2013). Puentes de Fabrica. Los puentes ferroviarios dentro del patrimonio industrial [Fabrica bridges. The railway bridges within the industrial heritage]. Madrid: ADIF (in Spanish).
  • Mauro, A., de Felice, G., & DeJong, M. J. (2015). The relative dynamic resilience of masonry collapse mechanisms. Engineering Structures, 85, 182–194. doi:10.1016/j.engstruct.2014.11.021
  • Mautner, M., & Reiterer, M. (2007). Measurements of dynamic deformation behaviour of masonry arch bridges. Paper presented at the 5th ARCH International Conference on Arch Bridges, Madeira, Portugal.
  • Melbourne, C., Gilbert, M., & Wagstaff, M. (1997). The collapse behaviour of multi-span brickworkarch bridges. The Structural Engineer, 75, 297–305.
  • McKibbins, D. L., Melbourne, C., Sawar, N., Gaillard, S. C. (2006). Masonry arch bridges: Condition appraisal and remedial treatment ( CIRIA Report C656). London: Construction Industry Research and Information Association. ISBN-13: 978-0-86017-656-5.
  • Melbourne C., & Gilbert, M. (1992). The behaviour of multi-ring brickwork arch bridges containing ring separation. Paper presented at the 3rd International Masonry Conference, London, UK.
  • Melbourne, C., Gilbert, M., & Wagstaff, M. (1997). The collapse behaviour of multi span brickwork arch bridges. The Structural Engineer, 75, 297–305.
  • Melbourne, C., & Gilbert, M. (1995). Behaviour of multi-ring brickwork arch bridges. The structural engineer, 73, 39–47.
  • Melbourne, C., & Tomor, A. K. (2005). Test report-effect of weak/deteriorated masonry on the performance of arch bridges. Salford, UK: University of Salford.
  • Melbourne, C., & Walker, P. (1990). Load tests to collapse on a full-scale model six metre span brick arch bridge. London: HMSO.
  • Melbourne, C. (1991). Conservation of masonry arch bridges. Paper presented at the 9th International Brick and Block Masonry Conference Berlin, Germany.
  • Melbourne, C., Quazzaz, A., & Wlaker, P. J. (1989). Influence of ring separation on the load carrying capacity of brickwork masonry arch bridges. Paper presented at the SERC Conference on Repair, Maintenance and Operation in Civil Engineering, London, UK.
  • Melbourne, C., Wang, J., Tomor, A. K., Holm, G., Smith, M., Bengtsson, P. E., Bien, J., Kaminski, T., Rawa, P., Casas, J. R., Roca, P., & Molins, C. (2007). Masonry arch bridges. In Guideline for load and resistance assessment of railway bridges. Sustainable Bridges, EU FP6 Project. Retrieved February 25, 2015, from http://www.sustainablebridges.net
  • Melbourne, C., Wang, J., & Tomor, A. (2007). A new masonry arch bridge assessment strategy (SMART). Proceedings of the Institution of Civil Engineers: Bridge Engineering, 160, 81–87. doi:10.1680/bren.2007.160.2.81
  • Milani, G., & Lourenço, P. B. (2012). 3D non-linear behavior of masonry arch bridges. Computers and Structures, 110–111, 133–150. doi:10.1016/j.compstruc.2012.07.008
  • Modena, C., Tecchio, G., Pellegrino, C., da Porto, F., Donà, M., Zampieri, M., & Zanini, M. A. (2015). Reinforced concrete and masonry arch bridges in seismic areas: Typical deficiencies and retrofitting strategies. Structure and Infrastructure Engineering, 11, 415–442. doi:10.1080/15732479.2014.951859
  • Mullett, P. J., Briggs, M., & Minton, K. (2006). Architect-strengthening and preserving masonry arch bridges in Cumbria. In Proceedings of Structural Faults and Repair, Edinburgh, UK.
  • Munjiza, A. (2004). The combined finite-discrete element method. Chichester: John Wiley & Sons Ltd.10.1002/0470020180
  • Ng, K. -H. (1999). Analysis of masonry arch bridges ( PhD thesis, Napier University, Edinburgh, UK).
  • Oliveira, D. V., Lourenço, P. B., & Lemos, C. (2010). Geometric issues and ultimate load capacity of masonry arch bridges from the northwest Iberian Peninsula. Engineering Structures, 32, 3955–3965. doi:10.1016/j.engstruct.2010.09.006
  • Oliveira, D. V., Lourenço, P. B., & Roca, P. (2006). Cyclic behaviour of stone and brick masonry under uniaxial compressive loading. Materials and Structures, 39, 219–227. doi:10.1617/s11527-005-9050-3
  • Olivito, R. S., & Stumpo, P. (2001). Fracture mechanics in the characterisation of brick masonry structures. Materials and Structures, 34, 217–223. doi:10.1007/BF02480591
  • Olofsson, I., Elfgren, L., Bell, B., Paulsson, B., Niederleithinger, E., Jensen, J. S., Feltrin, G., Täljsten, B., Cremona, C., Kiviluoma, R., & Bien, J. (2005). Assessment of European railway bridges for future traffic demands and longer lives – EC project “Sustainable Bridges”. Structure and Infrastructure Engineering, 1, 93–100. doi:10.1080/15732470412331289396
  • Oppenheim, I. J. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake Engineering and Structural Dynamics, 21, 1005–1017. doi:10.1002/eqe.4290211105
  • Orbán, Z., & Gutermann, M. (2009). Assessment of masonry arch railway bridges using non-destructive in situ testing methods. Engineering Structures, 31, 2287–2298. doi:10.1016/j.engstruct.2009.04.008
  • Page, A. W. (1981). The biaxial compressive strength of brick masonry. Proceedings of the Institution of Civil Engineers, 71, 893–906. doi:10.1680/iicep.1981.1825
  • Page, A. W. (1983). The strength of brick masonry under biaxial compression-tension. International Journal of Masonry Construction, 3, 26–31. doi:10.1061/(ASCE)0733-9445(1991)117:5(1336)
  • Page, J. (1993). Masonry arch bridges. State of art review. London: HMSO, Department of Transport, Transport Research Laboratory.
  • Page J. (1995). Load tests to collapse on masonry arch bridges. Arch Bridges: Proceedings of the First International Conference on Arch Bridges, Bolton, UK.
  • Page, J., Ives, D. A., & Ashurst, D. (1991). Deterioration and repair of masonry arch bridges. Paper presented at the 9th I.B.Ma.C. International Brick-block Masonry Conference, Berlin, Germany.
  • Pech, A., & Zach, F. (2009). Mauerwerksdruckfestigkeit – Bestimmung bei Bestandsobjekten [Masonry compressive strength - Determination of existing properties]. Mauerwerk, 13(3), 135–139. doi:10.1002/dama.200900421 (in German).
  • Pelà, L., Aprile, A., & Benedetti, A. (2013). Comparison of seismic assessment procedures for masonry arch bridges. Construction and Building Materials, 38, 381–394. doi:10.1016/j.conbuildmat.2012.08.046
  • Pellegrino, C., Zanini, M. A., Zampieri, P., & Modena, C. (2014). Contribution of in situ and laboratory investigations for assessing seismic vulnerability of existing bridges. Structure and Infrastructure Engineering, 11, 1147–1162. doi:10.1080/15732479.2014.938661
  • Pippard, A. J. S., & Chitty, L. (1951). A study of voussoir arch. National building studies. London: HMSO.
  • Pippard A. J. S. (1948). The approximate estimation of safe loads on masonry bridges. The civil engineer in war: A symposium of papers on war-time engineering problems (Vol. 1, pp. 365–372). London: The institution of Civil Engineers.
  • Pippard, A.J.S., & Chitty, L. (1951). A Study of The Voussoir Arch Research Paper 11. London: Building Research Station.
  • Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (1998). Artificial neural networks for modelling some of the activities of the computational stage of the design process, In: Wang, K. C. P., Adams, T., Maher, M.L., Songer, A. (eds.), Proceedings of the International Computing Congress. 18-21 October, Boston, Massachusetts, ASCE Reston, USA, pp. 631–643.
  • Resemini, S., & Lagomarsino, S. (2007). Displacement-based methods for the seismic assessment of masonry arch bridges. Paper presented at the 5th International Conference on Arch Bridges, Madeira, Portugal.
  • Roberts, T. M., Hughes, T. G., Dandamudi, V. R., & Bell, B. (2006). Quasi-static and high cycle fatigue strength of brick masonry. Construction and Building Materials, 20, 603–614. doi:10.1016/j.conbuildmat.2005.02.013
  • Rondelet, G. (1802). Traité theorique et pratique de l’art de bâtir [Theoretical and practical treatise of the art of building]. Paris: Didot Frères Fils et Cie Ed. (in French).
  • Rota, M., Pecker, A., Bolognini, D., & Pinho, R. (2005). A methodology for seismic vulnerability of masonry arch bridge walls. Journal of Earthquake Engineering, 9, 331–353. doi:10.1142/S1363246905002432
  • Rots, J. G. (1997). Numerical studies with UDEC. In Structural masonry: An experimental/numerical basis for practical design rules (CUR Report 171) (CUR-reports). Rotterdam: Taylor & Francis, Pages 1–149. ISBN 10: 9054106808 ISBN 13: 9789054106807.
  • Royles, R., & Hendry, A. W. (1991). Model tests on masonry arches. Proceedings of the Institution of Civil Engineers, 91, 299–321. doi:10.1680/iicep.1991.14997
  • Sarhosis, V., & Sheng, Y. (2014). Identification of material parameters for low bond strength masonry. Engineering Structures, 60, 100–110. doi:10.1016/j.engstruct.2013.12.013
  • Sarhosis, V., Garrity, S. E., & Sheng, Y. (2015). Influence of brick–mortar interface on the mechanical behaviour of low bond strength masonry brickwork lintels. Engineering Structures, 88, 1–11. doi:10.1016/j.engstruct.2014.12.014
  • Sarhosis, V., Oliveira, D. V., Lemos, J. V., & Lourenco, P. B. (2014). The effect of skew angle on the mechanical behaviour of masonry arches. Mechanics Research Communications, 61, 53–59. doi:10.1016/j.mechrescom.2014.07.008
  • Schlegel, R., & Rautenstrauch, K. (2004). Comparative computations of masonry arch bridges using continuum and discontinuum mechanics. In H. Konietzky (Ed.), Numerical modelling of discrete materials in geotechnical engineering, civil engineering and earth sciences (pp. 3–6). London: Taylor & Francis Group.
  • Séjourné, P. (1913). Grandes voutes. Bourges: Imprimerie Veuve Tardy [Large vaults . Bourges Printing Widow Tardy] (in French).
  • Shrive, N. G. (1985). Compressive strength and strength testing of masonry. Paper presented at the 7th International Brick/Block Masonry Conference, Melbourne, Australia.
  • Stablon, T. (2011). Méthodologie pour la requalification des ponts en maçonnerie [Methodology for assessment of masonry bridges] ( PhD thesis, Université Paul Sabatier, Toulouse 3, France) (in French).
  • Swift, G. M., Augusthus-Nelson, L., Melbourne, C., & Gilbert, M. (2013). Physical modelling of cyclically loaded masonry arch bridges. Paper presented at the 7th International Conference on Arch Bridges, Split, Croatia.
  • Thavalingam, A., Bicanic, N., Robinson, J. I., & Ponniah, D. A. (2001). Computational framework for discontinuous modelling of masonry arch bridges. Computers and Structures, 79, 1821–1830. doi:10.1016/S0045-7949(01)00102-X
  • Tomor, A. K., De Santis, S., & Wang, J. (2013). Fatigue deterioration process of brick masonry. Masonry International, 26, 41–48.
  • Tóth, A. R., Orbán, Z., & Bagi, K. (2009). Discrete element analysis of a stone masonry arch. Mechanics Research Communications, 36, 469–480. doi:10.1016/j.mechrescom.2009.01.001
  • Towler, W. J., & Sawko, F. (1982). Limit state behaviour of brickwork arches. Paper presented at the 6th international conference on brick masonry, Rome
  • UIC Code 778-3R. (1994). Recommendations for the inspection, assessment and maintenance of masonry arch bridges. Paris: International Union of Railways.
  • Venu Madhava Rao, K., Venkatarama Reddy, B. V., & Jagadish, K. S. (1997). Strength characteristics of stone masonry. Materials and Structures, 30, 233–237. doi:10.1007/BF02486181
  • Wang, J., & Melbourne, C. (2010). Mechanics of MEXE method for masonry arch bridge assessment. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 163, 187–202. doi:10.1680/eacm.2010.163.3.187
  • Zampieri, P., Tecchio, G., da Porto, F., & Modena, C. (2015). Limit analysis of transverse seismic capacity of multi-span masonry arch bridges. Bulletin of Earthquake Engineering, 13, 1557–1579. doi:10.1007/s10518-014-9664-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.