916
Views
54
CrossRef citations to date
0
Altmetric
Articles

Target reliability for existing structures considering economic and societal aspects

, , &
Pages 181-194 | Received 15 Jan 2016, Accepted 29 May 2016, Published online: 02 Aug 2016

References

  • Allen, D. E. (1993). Safety criteria for the evaluation of existing structures. Proceedings IABSE Colloquium on Remaining Structural Capacity, Copenhagen, Denmark.
  • Allen, D. E. (1981). Criteria for design safety factors and quality assurance expenditure. Proceedings of 3rd International Conference on Structural Safety and Reliability (pp. 666–678). Trondheim.
  • Ang, A. H. S., & De Leon, D. (1997). Determination of optimal target reliabilities for design and upgrading of structures. Structural Safety, 19, 91–103. doi:10.1016/S0167-4730(96)00029-X
  • ASCE 7-10. (2013). Minimum design loads for buildings and other structures. Reston, VA: American Society of Civil Engineers. doi:10.1061/9780784412916
  • Bhattacharya, B., Basu, R., & Ma, K. (2001). Developing target reliability for novel structures: The case of the mobile offshore base. Marine Structures, 14, 37–58. doi:10.1016/S0951-8339(00)00024-1
  • Bigaj-van Vliet, A., & Vrouwenvelder, T. (2013). Reliability in the performance-based concept of fib Model Code 2010. Structural Concrete, 14, 309–319. doi:10.1002/suco.201300053
  • Casas, J. R., & Wisniewski, D. (2013). Safety requirements and probabilistic models of resistance in the assessment of existing railway bridges. Structure and Infrastructure Engineering, 9, 529–545. doi:10.1080/15732479.2011.581673
  • Caspeele, R., Sykora, M., Allaix, D. L., & Steenbergen, R. (2013). The design value method and adjusted partial factor approach for existing structures. Structural Engineering International, 23, 386–393. doi:10.2749/101686613X13627347100194
  • Cha, E. J., & Ellingwood, B. R. (2012). Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events. Reliability Engineering and System Safety, 104, 27–35. doi:10.1016/j.ress.2012.04.002
  • Diamantidis, D., & Bazzurro, P. (2007). Safety acceptance criteria for existing structures. Special Workshop on Risk Acceptance and Risk Communication, Stanford University, CA, USA.
  • Diamantidis, D. (2008). Current safety acceptance criteria in codes and standards – A critical review. Proceedings of ASCE Structures Congress, Vancouver, Canada. doi:10.1061/41016(314)76
  • Eldukair, Z. A., & Ayyub, B. M. (1991). Analysis of recent U.S. structural and construction failures. Journal of Performance of Constructed Facilities, 5, 57–73.10.1061/(ASCE)0887-3828(1991)5:1(57)
  • EN 1990. 2002. Eurocode – Basis of structural design. Brussels: CEN.
  • EN 1991-1-7. (2006). Eurocode 1: Actions on structures – Part 1–7: General actions – Accidental actions. Brussels: CEN.
  • Faber, M. H. (2015). Codified risk informed decision making for structures. Proceedings of Symposium on Reliability of Engineering Systems SRES’2015, Hangzhou, China.
  • FEMA. (2009). Handbook for rapid visual screening of buildings to evaluate terrorism risks. No. FEMA 455. Federal Emergency Management Agency, USA.
  • fib. (2013). fib model code for concrete structures 2010. Lausanne: Author.
  • Hamburger, R. O. (2013). Provisions in present U.S. building codes and standards for resilience (NIST technical note 1795). Gaithersburg, MD: NIST.
  • Hingorani, R., & Tanner, P. (2014). Structural safety requirements based on risks to persons. Proceedings of Jornadas Internacionales Conmemorativas Del 80 Aniversario Del IETcc, Madrid. 12.
  • Holicky, M. (2013). Optimisation of the target reliability for temporary structures. Civil Engineering and Environmental Systems, 30, 87–96. doi:10.1080/10286608.2012.733373
  • Holicky, M. (2014). Optimum reliability levels for structures. In M. Beer, S.-K. Au & J. W. Hall (Eds.), Vulnerability, uncertainty, and risk: Quantification, mitigation, and management (pp. 184–193). Reston, VA: American Society of Civil Engineers. doi:10.1061/9780784413609.019
  • Holicky, M., & Sykora, M. (2011). Conventional probabilistic models for calibration of codes. Proceedings of ICASP11 (pp. 969–976). ETH Zurich, Switzerland.
  • ISO 2394. (1998). General principles on reliability for structures (2nd ed.). Geneve: ISO.
  • ISO 13822. (2010). Bases for design of structures – Assessment of existing structures. Geneve: ISO TC98/SC2.
  • ISO 15686-5. (2008). Buildings and constructed assets – Service-life planning – Part 5: Life-cycle costing (1st ed.). Geneve: ISO.
  • ISO 2394. (2015). General principles on reliability for structures (4th ed.). Geneve: Autor.
  • Janssens, V., O’Dwyer, D. W., & Chryssanthopoulos, M. K. (2012). Assessing the consequences of building failures. Structural Engineering International, 22, 99–104. doi:10.2749/101686612X13216060213473
  • JCSS. (2001a). JCSS probabilistic model code (periodically updated, online publication). Lyngby. Retrieved from www.jcss.byg.dtu.dk
  • JCSS. (2001b). Probabilistic assessment of existing structures. D. Diamantidis (Ed.), Joint Committee on Structural Safety. Bagneux: RILEM Publications S.A.R.L.
  • Kanda, J., & Shah, H. (1997). Engineering role in failure cost evaluation for buildings. Structural Safety, 19, 79–90. doi:10.1016/S0167-4730(96)00039-2
  • Kaszynska, M., & Nowak, A. S. (2005). Target reliability for design and evaluation of bridges. Management 5: Inspection, maintenance, assessment and repair (pp. 401–408). London. doi: 10.1680/bmf.33542.0051
  • Lee, J. Y., & Ellingwood, B. R. (2015). Ethical discounting for civil infrastructure decisions extending over multiple generations. Structural Safety, 57, 43–52. doi:10.1016/j.strusafe.2015.06.001
  • Lenner, R., & Sýkora, M. (2016). Partial factors for loads due to special vehicles on road bridges. Engineering Structures, 106, 137–146. doi:10.1016/j.engstruct.2015.10.024
  • Lentz, A. (2007). Acceptability of civil engineering decisions involving human consequences (Ph.D. thesis). TU Munich, Munich, Germany.
  • Luechinger, P., Fischer, J., Chrysostomou, C., Dieteren, G., Landon, F., Leivestad, S., & Tanner, P. (2015). New european technical rules for the assessment and retrofitting of existing structures (JRC science and policy report). (No. JRC94918). Luxembourg: JRC. doi:10.2788/095215
  • Melchers, R. E. (2001). Structural reliability analysis and prediction (2nd ed.). Chichester: Wiley.
  • Nathwani, J. S., Pandey, M. D., & Lind, N. C. (2009). Engineering decisions for life quality: How safe is safe enough?. London: Springer-Verlag.10.1007/978-1-84882-602-1
  • NEN 8700. (2009). Grondslagen van de beoor deling van de constructieve veiligheid van een bestaand bouwwerk [Assessment of existing structures in case of reconstruction and disapproval – basic rules; in Dutch]. Delft: Nederlands Normalisatie Instituut.
  • Rackwitz, R. (2000). Optimization – The basis of code-making and reliability verification. Structural Safety, 22, 27–60. doi:10.1016/S0167-4730(99)00037-5
  • Rackwitz, R. (2002). Optimization and risk acceptability based on the Life Quality Index. Structural Safety, 24, 297–331. doi:10.1016/S0167-4730(02)00029-2
  • Smit, C. F., & Barnardo-Vijloen, C. (2013). Reliability based optimization of concrete structural components. Proceedings of 11th International Probabilistic Workshop (pp. 391–404). Brno.
  • Steenbergen, R. D. J. M., & Vrouwenvelder, A. C. W. M. (2010). Safety philosophy for existing structures and partial factors for traffic loads on bridges. Heron, 55, 123–139.
  • Steenbergen, R. D. J. M., Sykora, M., Diamantidis, D., Holicky, M., & Vrouwenvelder, A. C. W. M. (2015). Economic and human safety reliability levels for existing structures. Structural Concrete, 16, 323–332. doi:10.1002/suco.201500022
  • Stewart, M. (2010a). Risk-informed decision support for assessing the costs and benefits of counter-terrorism protective measures for infrastructure. International Journal of Critical Infrastructure Protection, 3, 29–40. doi:10.1016/j.ijcip.2009.09.001
  • Stewart, M. G. (2010b). Acceptable Risk Criteria for Infrastructure Protection. International Journal of Protective Structures, 1, 23–40. doi:10.1080/15732470902726023
  • Sykora, M., Diamantidis, D., Holicky, M., & Jung, K. (2015). Target reliability levels for assessment of existing structures considering economic and societal aspects. Proceedings of IALCCE 2014 (pp. 838–845). Tokyo, Japan.
  • Sykora, M., & Holicky, M. (2012). Target reliability levels for the assessment of existing structures – case study. Proceedings of IALCCE 2012 (pp. 813–820). Vienna, Austria.
  • Sykora, M., Holicky, M., & Markova, J. (2011). Target reliability levels for assessment of existing structures. Proceedings of ICASP11 (pp. 1048–1056). ETH Zurich, Switzerland.
  • Sykora, M., Holicky, M., & Markova, J. (2013). Verification of existing reinforced concrete bridges using the semi-probabilistic approach. Engineering Structures, 56, 1419–1426. doi:10.1016/j.engstruct.2013.07.015
  • Sykora, M., Holicky, M., Markova, J., & Senberger, T. (2016). Probabilistic reliability assessment of existing structures focused on industrial heritage buildings. Prague: Ceska technika (the Publishing House of CTU in Prague).
  • Tanner, P., & Hingorani, R. (2010). Development of risk-based requirements for structural safety. Joint IABSE – fib Conference Codes in Structural Engineering (pp. 379–386). Dubrovnik, Croatia.
  • Tanner, P., & Hingorani, R. (2015). Acceptable risks to persons associated with building structures. Structural Concrete, 16, 314–322. doi:10.1002/suco.201500012
  • Vrouwenvelder, A. C. W. M. (2002). Developments towards full probabilistic design codes. Structural Safety, 24, 417–432. doi:10.1016/S0167-4730(02)00035-8
  • Vrouwenvelder, A. C. W. M. (2012). Target reliability as a function of the design working life. Proceedings of 6th IFED Forum, Lake Louise, Canada.
  • Vrouwenvelder, A. C. W. M., & Scholten, N. (2010). Assessment criteria for existing structures. Structural Engineering International, 20, 62–65.10.2749/101686610791555595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.