737
Views
26
CrossRef citations to date
0
Altmetric
Articles

Development of time-dependent fragility functions for deteriorating reinforced concrete bridge piersFootnote1

, &
Pages 67-83 | Received 21 Mar 2016, Accepted 29 May 2016, Published online: 07 Jul 2016

References

  • Akiyama, M., Frangopol, D. M., & Matsuzaki, H. (2011). Life-cycle reliability of RC bridge piers under seismic and airborne chloride hazards. Earthquake Engineering and Structural Dynamics, 40, 1671–1687.10.1002/eqe.v40.15
  • Akiyama, M., Frangopol, D. M., & Suzuki, M. (2012). Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment. Structure and Infrastructure Engineering, 8, 125–134.10.1080/15732470903363313
  • Applied Technology Council. (1985). ATC-13: Earthquake damage evaluation data for California. Washington, DC: Federal Emergency Management Agency.
  • Aquino, W. (2002). Long-term performance of seismically rehabilitated corrosion-damaged columns (PhD dissertation). University of Illinois, Urbana-Champaign.
  • Aquino, W., & Hawkins, N. M. (2007). Seismic retrofitting of corroded reinforced concrete columns using carbon composites. ACI Structural Journal, 104, 348–356.
  • Baker, J. W., & Cornell, C. A. (2005). Vector-valued ground motion intensity measures for probabilistic seismic demand analysis (Technical report 150). Stanford, CA: The John A. Blume Earthquake Engineering Center.
  • Berry, M. P., & Eberhard, M. O. (2007). Performance modeling strategies for modern reinforced concrete bridge columns (Technical report). Berkeley, CA: Pacific Earthquake Engineering Research Center, University of California.
  • Billah, A. H. M. M., & Alam, M. S. (2015). Seismic fragility assessment of highway bridges: A state-of-the-art review. Structure and Infrastructure Engineering, 11, 804–832.10.1080/15732479.2014.912243
  • Biondini, F., Palermo, A., & Toniolo, G. (2011). Seismic performance of concrete structures exposed to corrosion: Case studies of low-rise precast buildings. Structure and Infrastructure Engineering, 7, 109–119.10.1080/15732471003588437
  • California Department of Transportation. (2008). Caltrans memo to designers 20-4: Seismic retrofit guidelines for bridges in California. Sacramento, CA: Author.
  • California Department of Transportation. (2012, November). Corrosion guidelines (Version 2.0. Technical report). Sacramento, CA: Author.
  • Choe, D.-E., Gardoni, P., Rosowsky, D. V., & Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering & System Safety, 93, 383–393.
  • Choe, D.-E., Gardoni, P., Rosowsky, D. V., & Haukaas, T. (2009). Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Structural Safety, 31, 275–283.10.1016/j.strusafe.2008.10.001
  • Choi, E., DesRoches, R., & Nielson, B. G. (2004). Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 26, 187–199.10.1016/j.engstruct.2003.09.006
  • Cornell, C. A., & Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER Center News, 3, 1–3.
  • Elwood, K. J., & Moehle, J. P. (2005). Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake Spectra, 21, 71–89.10.1193/1.1849774
  • Enright, M. P., & Frangopol, D. M. (1998a). Service-life prediction of deteriorating concrete bridges. Journal of Structural Engineering, 124, 309.10.1061/(ASCE)0733-9445(1998)124:3(309)
  • Enright, M. P., & Frangopol, D. M. (1998b). Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Engineering Structures, 20, 960–971.10.1016/S0141-0296(97)00190-9
  • FEMA. (2011). Hazus-MH MR5 Technical manual. Multi-hazard loss estimation methodology: Earthquake model (Technical report). Washington, DC: Author.
  • Frangopol, D. M., & Das, P. C. (1999). Management of bridge stocks based on future reliability and maintenance costs. In P. C. Das, D. M. Frangopol, & A. S. Nowak (Eds.), Current and future trends in bridge design, construction and maintenance (pp. 45–58). London. The Institution of Civil Engineers, Thomas Telford.
  • Frangopol, D. M., Kong, J. S., & Gharaibeh, E. S. (2000). Bridge management based on lifetime reliability and whole life costing: The next generation. In M. Ryall, G. Parke, & J. Harding (Eds.), Bridge management 4: Inspection, maintenance, assessment and repair (pp. 392–399). London: Institution of Civil Engineers, Thomas Telford.
  • Frangopol, D. M., Kong, J. S., & Gharaibeh, E. S. (2001). Reliability-based life-cycle management of highway bridges. Journal of Computing in Civil Engineering, 15, 27–34.10.1061/(ASCE)0887-3801(2001)15:1(27)
  • Ghosh, J., & Padgett, J. E. (2010). Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136, 1497–1511.10.1061/(ASCE)ST.1943-541X.0000260
  • Hwang, H., Liu, J. B., & Chiu, Y.-H. (2001). Seismic fragility analysis of highway bridges (Technical report). Memphis, TN: Center for Earthquake Research and Information, The University of Memphis.
  • Jalayer, F. (2003). Direct probabilistic seismic analysis: Implementing non-linear dynamic assessments (PhD dissertation), Stanford University, Stanford, CA.
  • Lepech, M., Rao, A., Kiremidjian, A., Michel, A., Stang, H., & Geiker, M. (2015). Multi-physics modeling and multi-scale deterioration modeling of reinforced concrete part II: Coupling corrosion and damage at the structural scale. In K. Dahl, H. Stang, & M. Bræstrup (Eds.), Proceedings of 2015 fib symposium: Innovation and design. Lausanne, Switzerland: Federation International du Beton.
  • Li, J., & Gong, J. (2008). Influences of rebar corrosion on seismic behavior of circular RC columns. China Journal of Highway and Transport, 21, 55–60.
  • Mackie, K. R., Wong, J.-M., & Stojadinovi’c, B. (2008). Integrated probabilistic performance-based evaluation of benchmark reinforced concrete bridges (Technical report). Berkeley: PEER Center, University of California.
  • Mazzoni, S., McKenna, F. T., Scott, M. H., & Fenves, G. L. (2007). Open system for earthquake engineering simulation user command-language manual. Berkeley: PEER Center, University of California.
  • Michel, A., Geiker, M., Stang, H., & Lepech, M. (2015). Multi-physics modeling and multi-scale deterioration modeling of reinforced concrete part I: Coupling transport and corrosion at the material scale. In K. Dahl, H. Stang, & M. Bræstrup (Eds.), Proceedings of 2015 fib symposium: Innovation and design. Lausanne, Switzerland: Federation International du Beton.
  • Mirza, S. A., & MacGregor, J. G. (1982). Probabilistic study of strength of reinforced concrete members. Canadian Journal of Civil Engineering, 9, 431–448.10.1139/l82-053
  • Mori, Y., & Ellingwood, B. R. (1993). Reliability‐based service‐life assessment of aging concrete structures. Journal of Structural Engineering, 119, 1600–1621.10.1061/(ASCE)0733-9445(1993)119:5(1600)
  • Nielson, B. G. (2005). Analytical fragility curves for highway bridges in moderate seismic zones (PhD dissertation). Georgia Institute of Technology, Atlanta, GA.
  • Nielson, B., & DesRoches, R. (2007, August). Analytical seismic fragility curves for typical bridges in the central and southeastern United States. Earthquake Spectra, 23, 615–633.
  • Padgett, J. E., & DesRoches, R. (2008). Methodology for the development of analytical fragility curves for retrofitted bridges. Earthquake Engineering & Structural Dynamics, 37, 1157–1174.
  • Porter, K. A., Hamburger, R. O., & Kennedy, R. P. (2007, May). Practical development and application of fragility functions. Proceedings of SEI structures congress (pp. 16–19). Long Beach, CA.
  • Ramanathan, K. N. (2012). Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design philosophy (PhD dissertation). Georgia Institute of Technology, Atlanta, GA.
  • Rao, A. (2014). Structural deterioration and time-dependent seismic risk analysis (PhD dissertation). Stanford University, Stanford, CA.
  • Rao, A. S., Lepech, M. D., & Kiremidjian, A. S. (2013, June 16–20). Time-dependent risk assessment of deteriorating reinforced-concrete bridges for sustainable infrastructure design. Proceedings of the 11th international conference on structural safety & reliability, New York, NY.
  • Rao, A. S., Lepech, M. D., Kiremidjian, A., & Sun, X.-Y. (in press). Development of structural deterioration model for structural fragilities, Structure and Infrastructure Engineering. Accepted for publication.
  • Thoft-Christensen, P. (1999). Estimation of bridge reliability distributions. In P. Das, D.M. Frangopol, & A. Novak (Eds.), International conference on current and future trends in bridge design construction and maintenance (pp. 15–25). Singapore: Thomas Telford.
  • Tuutti, K. (1982). Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute.
  • Val, D. V., & Stewart, M. G. (2003). Life-cycle cost analysis of reinforced concrete structures in marine environments. Structural Safety, 25, 343–362.10.1016/S0167-4730(03)00014-6
  • Vosooghi, A., & Saiidi, M. S. (2010). Post earthquake evaluation and emergency repair of damaged RC bridge columns using CFRP materials (Technical report). Reno, NV: University of Nevada.
  • Vosooghi, A., & Saiidi, M. S. (2012). Experimental fragility curves for seismic response of reinforced concrete bridge columns. ACI Structural Journal, 109, 825–834.
  • Weyers, R. T., Fitch, M. G., Larsen, E. P., Al-Qadi, I. L., Chamberlin, W. P., & Hoffman, P. C. (1994). Concrete bridge protection and rehabilitation: Chemical and physical techniques – service life estimates. Washington, DC: Strategic Highway Research Program, SHRP-S-668, National Research Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.