Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 13, 2017 - Issue 9
1,192
Views
4
CrossRef citations to date
0
Altmetric
Articles

Calibration of hydrodynamic model-driven sewer maintenance

, , &
Pages 1167-1185 | Received 08 Jan 2016, Accepted 23 Aug 2016, Published online: 26 Oct 2016

References

  • Bertrand-Krajewski, J.-L. (2007). Stormwater pollutant loads modelling: Epistemological aspects and case studies on the influence of field data sets on calibration and verification. Water Science and Technology, 55(4), 1–17.10.2166/wst.2007.090
  • van Bijnen, M., & Korving, H. (2008). Application and results of automatic validation of sewer monitoring data. In Proceedings of 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
  • van Bijnen, M., Korving, H., & Clemens, F. (2012). Impact of sewer condition on urban flooding: an uncertainty analysis based on field observations and Monte Carlo simulations on full hydrodynamic models. Water Science and Technology, 65, 2219–2227.10.2166/wst.2012.134
  • Carrera, J., & Neuman, S. P. (1986a). Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resources Research, 22, 199–210.10.1029/WR022i002p00199
  • Carrera, J., & Neuman, S. P. (1986b). Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resources Research, 22, 211–227.10.1029/WR022i002p00211
  • Clemens, F. H. L. R. (2001a). Hydrodynamic models in urban drainage: Application and calibration ( PhD thesis). Delft University of Technology, Delft, The Netherlands.
  • Clemens, F. H. L. R. (2001b, May 20–24). A design method for monitoring networks in urban drainage. In R. W. Brashaer & C. Maksimovic (Eds.), Urban drainage modeling. Proceedings of the specialty symposium held in conjunction with the World Water and Environmental Resources Congress, Orlando, FL, USA.
  • Clemens, F. H. L. R. (2001c, May 20–24). Calibration and verification of hydrodynamic models in urban drainage. In R. W. Brashaer & C. Maksimovic (Eds.), Urban drainage modeling. Proceedings of the specialty symposium held in conjunction with the World Water and Environmental Resources Congress, Orlando, FL, USA.
  • Conover, W. J. (1999). Practical nonparametric statistics (3rd ed., pp. 443–447). New York, NY: Wiley.
  • Desbordes, M. (1978). Urban runoff and design modelling. In Proceedings of International Conference on Urban Storm Drainage (pp. 353–361), Southampton, UK.
  • Doherty, J. (2005). PEST model-independent parameter estimation user manual (5th ed). Watermark Numerical Computing. Retrieved from http://www.pesthomepage.org/Downloads.php
  • Dotto, C. B. S., Kleidorfer, M., McCarthy, D. T., Deletic, A., Rauch, W., & Fletcher, T. D. (2010, November 7–10). Towards global assessment of modelling errors. In Proceedings of 6th International Conference on Sewer Processes and Networks, Surfers Paradise, Gold Coast, Australia.
  • Fuchs, L. (1998). Hydrologic modelling of urban catchments. In J. Maraslek, C. Maksimovic, E. Zeman, & R. Price (Eds.), Hydroinformatics tools for planning, design, operation and rehabilitation of sewer systems (pp. 189–208). Dordrecht: Kluwer Academic.
  • Hemker, C. J. (1996). The reliability of parameters in automatic calibration (in Dutch). In Modelkalibratie: Het automatisch ijken van grondwatermodellen [Model calibration: The automatic calibration of groundwater models], The Dutch Hydrological Association, NHV, Special Issue 2, 39–51.
  • Henrichs, M., Vosswinkel, N., & Uhl, M. (2008). Influence of uncertainties on calibration results of a hydrological model. In 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Harbor, MI: The University of Michigan Press.
  • Horton, R. E. (1940). An approach towards a physical interpretation of infiltration capacity. Soil Science Society of America, Vol. 5, 399–417.
  • Innovyze Software. (2012). InfoWorks CS documentation. On-line documentation (Version 13.0.6), Broomfield.
  • Jacobs, C., Elbers, J., Moors, E., & Van Hove, B. (2015). How much water is the city evaporating? Edition H2O. Water Matters, Knowledge Journal for Water Professionals, Edition 2/2015, 34–37.
  • Jacobson, E. (1985). A statistical parameter estimation method using singular value decomposition with application to Avra Valley in southern Arizona ( PhD thesis). University of Arizona, Tucson, AZ, USA.
  • Korving, H. (2004). Probabilistic assessment of the performance of combined sewer systems ( PhD thesis). Delft University of Technology, Delft, The Netherlands.
  • Langeveld, J. G. (2004). Interactions within wastewater systems ( PhD thesis). Delft University of Technology, Delft, The Netherlands.
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.10.1137/0111030
  • Mourad, M., & Berttrand-Krajewski, J.-L. (2002). A method for automatic validation of long time series of data in urban hydrology. Water Science and Technology, 45, 263–270.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10, 282–290.10.1016/0022-1694(70)90255-6
  • NEN 3399. (2004). Sewerage systems outside buildings – Classification system for visual inspection of objects.
  • NEN-EN 13508-2. (2003). Conditions of drain and sewer systems outside buildings – Part 2: Visual inspection coding system.
  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193, 120–145.10.1098/rspa.1948.0037
  • Price, R. K., & Osborne, M. P. (1986). Verification of sewer simulation models. In C. Maksimovic & M. Radojkovic (Eds.), Proceedings of International Symposium on comparison of urban drainage models with real catchment data (pp. 99–106). UDM’ 1986, Pergamon Press, Dubrovnik, Yugoslavia.
  • Rauch, W., & Harremoës, P. (1999a). On the potential of genetic algorithms in urban drainage modeling. Urban Water, 1, 79–89.10.1016/S1462-0758(99)00010-2
  • Rauch, W., & Harremoës, P. (1999b). Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Research, 33, 1265–1277.10.1016/S0043-1354(98)00304-2
  • Rosen, C., Röttorp, J., & Jeppsson, U. (2003). Multivariate on-line monitoring: Challenges and solutions for modern wastewater treatment operation. Water Science and Technology, 47, 171–179.
  • Saegrov, S. (Ed.). (2006). CARE-S. Computer aided rehabilitation of sewer and storm water networks. London: IWA Publishing.
  • Schilperoort, R. P. S., Dirksen, J., & Clemens, F. H. L. R. (2008). Practical aspects for long-term monitoring campaigns: Pitfalls to avoid to maximize data yield. In Proceedings of the 10th ICUD conference, Edinburgh, Scotland, UK.
  • Stegeman, B. (2012). Model calibration as a tool to identify sewer maintenance ( Msc thesis). Delft University of Technology, The Netherlands.
  • Stichting RIONED. (1999, July). Leidraad Riolering. Module C2100. Rioleringsberekeningen, hydraulisch functioneren (in Dutch). Kluwer, Alphen aan de Rijn.
  • Van Luijtelaar, H., & Rebergen, E. W. (1997). Guidelines for hydrodynamic calculations on urban drainage in the Netherlands: Backgrounds and examples. Water Science and Technology, 36, 253–258.10.1016/S0273-1223(97)00590-8
  • Van Mameren, H. J., & Clemens, F. H. L. R. (1997). Guidelines for hydrodynamic calculations on urban drainage in the Netherlands: Overview and principles. Water Science and Technology, 36, 247–252.10.1016/S0273-1223(97)00591-X