Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 10
685
Views
21
CrossRef citations to date
0
Altmetric
Articles

System loss assessment of bridge networks accounting for multi-hazard interactions

ORCID Icon & ORCID Icon
Pages 1355-1371 | Received 27 Jul 2017, Accepted 06 Nov 2017, Published online: 13 Feb 2018

References

  • Adey, B. T., Hackl, J., Lam, J. C., van Gelder, P., van Erp, N., Prak, P., Heitzler, M., Iosifescu, I., & Hurni, L. (2016). Ensuring acceptable levels of infrastructure related risks due to natural hazards with emphasis on stress tests. Proceedings of the First International Symposium on Infrastructure Asset Management (SIAM), Kyoto, Japan.
  • Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 81, 195–206. doi:10.1785/gssrl.81.2.195
  • Alipour, A., Shafei, B., & Shinozuka, M. (2012). Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: Scour and earthquake. Journal of Bridge Engineering, 18, 362–371. doi:10.1061/(ASCE)BE.1943-5592.0000369
  • Argyroudis, S., & Kaynia, A. M. (2014). Fragility functions of highway and railway infrastructure. In K. Pitilakis, H. Crowley, & A.M. Kaynia (Eds.), SYNER-G: Systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities – Typology definition and fragility functions for physical elements at seismic risk (pp. 299–326). Dordrecht: Springer.
  • Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31, 579–599. doi:10.1193/021113EQS025M
  • Bensi, M., Der Kiureghian, A., & Straub, D. (2011). A Bayesian Network methodology for infrastructure seismic risk assessment and decision support (Report No. 2011/02). Berkeley, CA: Pacific Earthquake Engineering Research Center.
  • Bensi, M., Der Kiureghian, A., & Straub, D. (2013). Efficient Bayesian Network modeling of systems. Reliability Engineering and System Safety, 112, 200–213. doi:10.1016/j.ress.2012.11.017
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake spectra, 19, 733–752. doi:10.1193/1.1623497
  • Cardone, D. (2014). Displacement limits and performance displacement profiles in support of direct displacement-based seismic assessment of bridges. Earthquake Engineering and Structural Dynamics, 43, 1239–1263. doi:10.1002/eqe.2396
  • Cavalieri, F., Franchin, P., Gehl, P., & Khazai, B. (2012). Quantitative assessment of social losses based on physical damage and interaction with infrastructural systems. Earthquake Engineering and Structural Dynamics, 41, 1569–1589. doi:10.1002/eqe.2220
  • Cavalieri, F., Franchin, P., Gehl, P., & D’Ayala, D. (2017). Bayesian Networks and infrastructure systems: Computational and methodological challenges. In P. Gardoni (Ed.), Risk and Reliability Analysis: Theory and Applications (pp. 385–415). London: Springer International Publishing.
  • Corbane, C., Hancilar, U., Ehrlich, D., & De Groeve, T. (2017). Pan-European seismic risk assessment: A proof of concept using the Earthquake Loss Estimation Routine (ELER). Bulletin of Earthquake Engineering, 15, 1057–1083. doi:10.1007/s10518-016-9993-5
  • Cornell, C. A., & Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER Center News, 3(2), 1–3.
  • D’Ayala, D., Gehl, P., Martinovic, K., Gavin, K., Clarke, J., Corbally, R., Tucker, M., Avdeeva, Y. V., van Gelder, P., Salceda Page, M. T., & Segarra Martinez, M. J. (2015). Fragility functions matrix (Report No. D3.2). Retrieved from INFRARISK Project Website http://www.infrarisk-fp7.eu
  • Deng, L., Wang, W., & Yu, Y. (2015). State-of-the-art review on the causes and mechanisms of bridge collapse. Journal of Performance of Constructed Facilities, 30, 04015005. doi:10.1061/(ASCE)CF.1943-5509.0000731
  • Dong, Y., Frangopol, D. M., & Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42, 1451–1467. doi:10.1002/eqe.2281
  • Dunnett, C. W., & Sobel, M. (1955). Approximations to the probability integral and certain percentage points of a multivariate analogue of student’s t-distribution. Biometrica, 42, 258–260. doi:10.2307/2333441
  • FEMA. (2003). HAZUS MR4 technical manual: Earthquake model. Washington, DC: Federal Emergency Management Agency.
  • Ferrer, F. J. (1993). Recomendaciones para el calculo hidrometeorologico de avenidas (Report No. 2A-WSD). Madrid: Ministerio de Fomento.
  • Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., & Marcomini, A. (2016). A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of environmental management, 168, 123–132. doi:10.1016/j.jenvman.2015.11.011
  • Gardoni, P., & Rosowsky, D. (2011). Seismic fragility increment functions for deteriorating reinforced concrete bridges. Structure and Infrastructure Engineering, 7, 869–879. doi:10.1080/15732470903071338
  • Gehl, P. (2017). Bayesian Networks for the multi-risk assessment of road infrastructure (PhD thesis). London: University College London.
  • Gehl, P., & D’Ayala, D. (2016). Development of Bayesian Networks for the multi-hazard fragility assessment of bridge systems. Structural Safety, 60, 37–46. doi:10.1016/j.strusafe.2016.01.006
  • Hackl, J., Adey, B. T., Heitzler, M., & Iosifescu-Enescu, I. (2015). An overarching risk assessment process to evaluate the risks associated with infrastructure networks due to natural hazards. International Journal of Performability Engineering, 11, 153–168.
  • Harary, F. (1994). Graph theory. Reading, MA: Addison-Wesley.
  • Ioannou, I., Rossetto, T., & Grant, D. N. (2012). Use of regression analysis for the construction of empirical fragility curves. Proceedings of the Fifteenth World Conference on Earthquake Engineering, Lisbon, Portugal.
  • Kafali, C. (2008). System performance under multi-hazard environment (PhD thesis). Ithaca, NY: Cornell University.
  • Kameshwar, S., & Padgett, J. E. (2014). Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards. Engineering Structures, 78, 154–166. doi:10.1016/j.engstruct.2014.05.016
  • Kang, W. H., Song, J., & Gardoni, P. (2008). Matrix-based system reliability method and applications to bridge networks. Reliability Engineering and System Safety, 93, 1584–1593. doi:10.1016/j.ress.2008.02.011
  • Karamlou, A., & Bocchini, P. (2017). Functionality-fragility surfaces. Earthquake Engineering and Structural Dynamics, 46, 1687–1709. doi:10.1002/eqe.2878
  • Kumar, R., & Gardoni, P. (2014). Effect of seismic degradation on the fragility of reinforced concrete bridges. Engineering Structures, 79, 267–275. doi:10.1016/j.engstruct.2014.08.019
  • Lam, J. C., & Adey, B. T. (2016). Integrating functional loss assessment and restoration analysis in the quantification of indirect consequences of natural hazards. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2, 04016008. doi:10.1061/AJRUA6.0000877
  • Lee, K. H., & Rosowsky, D. V. (2006). Fragility analysis of woodframe buildings considering combined snow and earthquake loading. Structural Safety, 28, 289–303. doi:10.1016/j.strusafe.2005.08.002
  • Lehman, D., Moehle, J., Mahin, S., Calderone, A., & Henry, L. (2004). Experimental evaluation of the seismic performance of reinforced concrete bridge columns. ASCE Journal of Structural Engineering, 130, 869–879. doi:10.1061/(ASCE)0733-9445(2004)130:6(869)
  • Mackie, K. R., & Stojadinovic, B. (2006). Post-earthquake functionality of highway overpass bridges. Earthquake Engineering and Structural Dynamics, 35, 77–93. doi:10.1002/eqe.534
  • Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L., & Di Ruocco, A. (2012). Basic principles of multi-risk assessment: A case study in Italy. Natural Hazards, 62, 551–573. doi:10.1007/s11069-012-0092-x
  • McKenna, F., Fenves, G. L., & Scott, M. H. (2000). Open system for earthquake engineering simulation (OpenSees) [Computer Software]. Retrieved from http://opensees.berkeley.edu
  • Mignan, A., Wiemer, S., & Giardini, D. (2014). The quantification of low-probability – High-consequences events: Part I. A generic multi-risk approach. Natural Hazards, 73, 1999–2022. doi:10.1007/s11069-014-1178-4
  • Modaressi, H., Desramaut, N., & Gehl, P. (2014). Specification of the vulnerability of physical systems. In K. Pitilakis, P. Franchin, B. Khazai, & H. Wenzel (Eds.), SYNER-G: Systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities – Methodology and Applications (pp. 131–184). Dordrecht: Springer.
  • Murphy, K. (2007). Bayes Net Toolbox [Computer Software]. Retrieved from http://github.com/bayesnet/bnt
  • Nassirpour, A., & D’Ayala, D. (2017). Fragility assessment of masonry infilled steel structures through simplified and dynamic methods. Earthquake Spectra. (under review).
  • Nielson, B. G. (2005). Analytical fragility curves for highway bridges in moderate seismic zones (PhD thesis). Atlanta, GA: Georgia Institute of Technology.
  • O’Brien, E., & the INFRARISK Consortium (2013–2016). Novel indicators for identifying critical INFRA structure at RISK from natural hazards [Research Project]. Retrieved from http://www.infrarisk-fp7.eu
  • Paté-Cornell, E. (2012). On “Black Swans” and “Perfect Storms”: Risk analysis and management when statistics are not enough. Risk Analysis, 32, 1823–1833. doi:10.1111/j.1539-6924.2011.01787.x
  • Poljansek, K., Bono, F., & Gutierrez, E. (2012). Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks. Earthquake Engineering and Structural Dynamics, 41, 61–79. doi:10.1002/eqe.1118
  • Pousse, G., Bonilla, L. F., Cotton, F., & Margerin, L. (2006). Non-stationary stochastic simulation of strong ground motion time-histories including natural variability: Application to the K-net Japanese database. Bulletin of the Seismological Society of America, 96, 2103–2117. doi:10.1785/0120050134
  • Prasad, G., & Banerjee, S. (2013). The impact of flood-induced scour on seismic fragility characteristics of bridges. Journal of Earthquake Engineering, 17, 803–828. doi:10.1080/13632469.2013.771593
  • Richardson, E. V., & Davis, S. R. (1995). Evaluating scour at bridges (Report No. FHWA-IP-90-017). Washington, DC: Federal Highway Administration.
  • Rossetto, T., Gehl, P., Minas, S., Galasso, C., Duffour, P., Douglas, J., & Cook, O. (2016). FRACAS: A capacity spectrum approach for seismic fragility assessment including record-to-record variability. Engineering Structures, 125, 337–348. doi:10.1016/j.engstruct.2016.06.043
  • Selva, J. (2013). Long-term multi-risk assessment: Statistical treatment of interaction among risks. Natural Hazards, 67, 701–722. doi:10.1007/s11069-013-0599-9
  • Temez, J. R. (1991). Extended and improved rational method. Proceedings of the Twenty-fourth IAHR World Congress, Madrid, Spain.
  • Tsionis, G., & Fardis, M. N. (2014). Fragility functions of road and railway bridges. In K. Pitilakis, H. Crowley, & A. M. Kaynia (Eds.), SYNER-G: Systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities – Typology definition and fragility functions for physical elements at seismic risk (pp. 259–298). Dordrecht: Springer.
  • Weatherill, G., Esposito, S., Iervolino, I., Franchin, P., & Cavalieri, F. (2014). Framework for seismic hazard analysis of spatially distributed systems. In K. Pitilakis, P. Franchin, B. Khazai, & H. Wenzel (Eds.), SYNER-G: Systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities – Methodology and applications (pp. 57–88). Dordrecht: Springer.
  • Werner, S. D., Taylor, C. E., Cho, S., Lavoie, J. P., Huyck, C., Eitzel, C., Chung, H., & Eguchi, R.T. (2006). REDARS 2: Methodology and software for seismic risk analysis of highway systems (Report No. MCEER-06-SP08). Buffalo, NY: Multidisciplinary Center for Earthquake Engineering Research.
  • Yin, Y., & Konagai, K. (2001). A simplified method for expression of the dynamic stiffness of large-scaled grouped piles in sway and rocking motions. JSCE Journal of Applied Mechanics, 4, 415–422. doi:10.2208/journalam.4.415
  • Zanini, M. A., Faleschini, F., & Pellegrino, C. (2016). Cost analysis for maintenance and seismic retrofit of existing bridges. Structure and Infrastructure Engineering, 12, 1411–1427. doi:10.1080/15732479.2015.1133661
  • Zanini, M. A., Faleschini, F., & Pellegrino, C. (2017). Probabilistic seismic risk forecasting of aging bridge networks. Engineering Structures, 136, 219–232. doi:10.1016/j.engstruct.2017.01.029
  • Zanini, M. A., Pellegrino, C., Morbin, R., & Modena, C. (2013). Seismic vulnerability of bridges in transport networks subjected to environmental deterioration. Bulletin of Earthquake Engineering, 11, 561–579. doi:10.1007/s10518-012-9400-9
  • Zuccaro, G., Cacace, F., Spence, R. J. S., & Baxter, P. J. (2008). Impact of explosive eruption scenarios at Vesuvius. Journal of Volcanology and Geothermal Research, 178, 416–453. doi:10.1016/j.jvolgeores.2008.01.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.