Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 4
404
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Appropriate ground motion intensity measures for estimating the earthquake demand of floor acceleration-sensitive elements in super high-rise buildings

&
Pages 467-483 | Received 05 Jun 2018, Accepted 13 Sep 2018, Published online: 01 Dec 2018

References

  • Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T., & Donahue, J. L. (2014). NGA-West2 database. Earthquake Spectra, 30(3), 989–1005. doi:10.1193/070913EQS197M
  • Arias, A. (1970). A measure of earthquake intensity. In R. J. Hansen (Ed.), Seismic design for nuclear power plants (pp. 438–483). Cambridge, MA: Massachusetts Institute of Technology Press.
  • Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501. doi:10.1785/0120060255
  • Benjamin, J. R. & Associates (1988). A criterion for determining exceedances of the operating basis earthquake (EPRI Report NP-5930). Palo Alto, CA: Electric Power Research Institute.
  • Bojorquez, E., & Iervolino, I. (2011). Spectral shape proxies and nonlinear structural response. Soil Dynamics and Earthquake Engineering, 31(7), 996–1008. doi:10.1016/j.soildyn.2011.03.006
  • Chen, Y., & Soong, T. T. (1988). Seismic response of secondary systems. Engineering Structures, 10(4), 218–228. doi:10.1016/0141-0296(88)90043-0
  • Chaudhuri, S. R., & Villaverde, R. (2008). Effect of building nonlinearity on seismic response of nonstructural components: A parametric study. Journal of Structural Engineering, 134(4), 661–670. doi:10.1061/(ASCE)0733-9445(2008)134:4(661)
  • Cordova, P. P., Deierlein, G. G., Mehanny, S. S., & Cornell, C. A. (2001). Development of a two-parameter seismic intensity measure and probabilistic assessment procedure. Paper presented at Proceedings of the second Us-Japan workshop on performance-based earthquake engineering methodology for reinforced concrete building structures, Sapporo, Hokkaido, Japan (pp. 187–206).
  • De Biasio, M., Grange, S., Dufour, F., Allain, F., & Petre-Lazar, I. (2014). A simple and efficient intensity measure to account for nonlinear structural behavior. Earthquake Spectra, 30(4), 1403–1426. doi:10.1193/010614EQS006M
  • Ebrahimian, H., Jalayer, F., Lucchini, A., Mollaioli, F., & Manfredi, G. (2015). Preliminary ranking of alternative scalar and vector intensity measures of ground shaking. Bulletin of Earthquake Engineering, 13(10), 2805–2840. doi:10.1007/s10518-015-9755-9
  • Fajfar, P., Vidic, T., & Fischinger, M. (1990). A measure of earthquake motion capacity to damage medium-period structures. Soil Dynamics and Earthquake Engineering, 9(5), 236–242. doi:10.1016/S0267-7261(05)80002-8
  • FEMA P695. (2009). Quantification of building seismic performance factors. Washington, DC: FEMA.
  • Giovenale, P., Cornell, C. A., & Esteva, L. (2004). Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses. Earthquake Engineering & Structural Dynamics, 33(8), 951–979. doi:10.1002/eqe.386
  • Guan, M., Du, H., Cui, J., Zeng, Q., & Jiang, H. (2015). Optimal ground motion intensity measure for long-period structures. Measurement Science and Technology, 26(10), 105001. doi:10.1088/0957-0233/26/10/105001
  • He, Z., Fu, S., & Ou, J. (2017). State transformation procedures for fiber beam-column element in inelastic dynamic time-history analysis for moment-resisting frames. Journal of Computing in Civil Engineering, 31(5), 04017036. doi:10.1061/(ASCE)CP.1943-5487.0000683
  • He, Z., Fu, S., Shi, Y., Tao, Q., & Sun, C. (2017). New speedup algorithms for nonlinear dynamic time history analysis of super tall building structures under strong earthquakes. The Structural Design of Tall and Special Buildings, 26(16), e1369. doi:10.1002/tal.1369
  • Housner, G. W., & Jennings, P. C. (1964). Generation of artificial earthquakes. ASCE Journal of the Engineering Mechanics Division, 90(1), 113–150.
  • Housner, G. W. (1975). Measures of severity of earthquake ground shaking. Paper presented at Proceedings of the U.S. National Conference on Earthquake Engineering, Ann Arbor, MI (pp. 25–33).
  • Housner, G. W. (1952). Spectrum intensity of strong motion earthquakes. Paper presented at Proceedings of the Symposium on Earthquakes and Blast Effects on Structures, Los Angeles, CA (pp. 20–36).
  • Kazantzi, A. K., & Vamvatsikos, D. (2015). Intensity measure selection for vulnerability studies of building classes. Earthquake Engineering & Structural Dynamics, 44(15), 2677–2694. doi:10.1002/eqe.2603
  • Kostinakis, K., Fontara, I. K., & Athanatopoulou, A. M. (2018). Scalar structure-specific ground motion intensity measures for assessing the seismic performance of structures: A review. Journal of Earthquake Engineering, 22(4), 630–665. doi:10.1080/13632469.2016.1264323
  • Lepage, A., Shoemaker, J. M., & Memari, A. M. (2012). Accelerations of nonstructural components during nonlinear seismic response of multistory structures. Journal of Architectural Engineering, 18(4), 285–297. doi:10.1061/(ASCE)AE.1943-5568.0000087
  • Lin, L., Naumoski, N., Saatcioglu, M., & Foo, S. (2011). Improved intensity measures for probabilistic seismic demand analysis. Part 1: Development of improved intensity measures. Canadian Journal of Civil Engineering, 38(1), 79–88. doi:10.1139/L10-110
  • Lu, X., Lu, X., Guan, H., & Ye, L. (2013). Comparison and selection of ground motion intensity measures for seismic design of super high-rise buildings. Advances in Structural Engineering, 16(7), 1249–1262. doi:10.1260/1369-4332.16.7.1249
  • Lu, X., Xie, L., Guan, H., Huang, Y., & Lu, X. (2015). A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design, 98, 14–25. doi:10.1016/j.finel.2015.01.006
  • Lu, X., Ye, L., Lu, X., Li, M., & Ma, X. (2013). An improved ground motion intensity measure for super high-rise buildings. Science China Technological Sciences, 56(6), 1525–1533. doi:10.1007/s11431-013-5234-1
  • Luco, N., & Cornell, C. A. (2007). Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra, 23(2), 357–392. doi:10.1193/1.2723158
  • Mackie, K., & Stojadinović, B. (2001). Probabilistic seismic demand model for California highway bridges. ASCE Journal of Bridge Engineering, 6(6), 468–481. doi:10.1061/(ASCE)1084-0702(2001)6:6(468)
  • Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2011). Open system for earthquake engineering simulation (OpenSees) command language manual. Retrieved from http://opensees.berkeley.edu/wiki/index.php/Command_Manual
  • Mehanny, S. S. (2009). A broad-range power-law form scalar-based seismic intensity measure. Engineering Structures, 31(7), 1354–1368. doi:10.1016/j.engstruct.2009.02.003
  • Ministry of Housing and Urban-Rural Development of People’s Republic of China. (2010a). Code for seismic design of buildings (GB 50011-2010). Beijing: China Architecture & Building Press (in Chinese).
  • Ministry of Housing and Urban-Rural Development of People’s Republic of China. (2010b). Technical specification for concrete structures of tall building (JGJ 3-2010). Beijing: China Architecture & Building Press (in Chinese).
  • Moehle, J., & Deierlein, G. G. (2004). A framework methodology for performance-based earthquake engineering. Paper presented at Proceedings of the 13th World Conference on Earthquake Engineering (Paper No. 679). Vancouver, BC, Canada.
  • Nau, J. M., & Hall, W. J. (1982). An evaluation of scaling methods for earthquake response spectra (Report No. SRS 499). Urbana, IL: University of Illinois.
  • Nuttli, O. W. (1979). The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude (Miscellaneous Paper S-71-1, Report 16). Vicksburg, MI: U.S. Army Corps of Engineers, Waterways Experiment Station.
  • Padgett, J. E., Nielson, B. G., & DesRoches, R. (2008). Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering & Structural Dynamics, 37(5), 711–725. doi:10.1002/eqe.782
  • Park, Y. J., Ang, A. H. S., & Wen, Y. K. (1985). Seismic damage analysis of reinforced concrete buildings. ASCE Journal of Structural Engineering, 111(4), 740–757. doi:10.1061/(ASCE)0733-9445(1985)111:4(740)
  • Rathje, E. M., Abrahamson, N. A., & Bray, J. D. (1998). Simplified frequency content estimates of earthquake ground motions. Journal of Geotechnical and Geo-Environmental Engineering, 124(2), 150–159. doi:10.1061/(ASCE)1090-0241(1998)124:2(150)
  • Reed, J. W., & Kassawara, R. P. (1990). A criterion for determining exceedance of the operating basis earthquake. Nuclear Engineering and Design, 123(2-3), 387–396. doi:10.1016/0029-5493(90)90259-Z
  • Reinoso, E., & Miranda, E. (2005). Estimation of floor acceleration demands in high‐rise buildings during earthquakes. The Structural Design of Tall and Special Buildings, 14(2), 107–130. doi:10.1002/tal.272
  • Riddell, R. (2007). On ground motion intensity indices. Earthquake Spectra, 23(1), 147–173. doi:10.1193/1.2424748
  • Riddell, R., & Garcia, J. E. (2001). Hysteretic energy spectrum and damage control. Earthquake Engineering & Structural Dynamics, 30(12), 1791–1816. doi:10.1002/eqe.93
  • Sarma, S. K., & Yang, K. S. (1987). An evaluation of strong motion records and a new parameter A95. Earthquake Engineering & Structural Dynamics, 15(1), 119–132. doi:10.1002/eqe.4290150109
  • Shome, N., & Cornell, C. A. (1999). Probabilistic seismic demand analysis of non-linear structures (Report No. RMS-35). Stanford, CA: Stanford University.
  • Singh, M. P., Moreschi, L. M., Suarez, L. E., & Matheu, E. E. (2006). Seismic design forces. I: Rigid nonstructural components. Journal of Structural Engineering, 132(10), 1524–1532. doi:10.1061/(ASCE)0733-9445(2006)132:10(1524)
  • Stewart, J. P., Chiou, S. J., Bray, J. D., Graves, R. W., Somerville, P. G., & Abrahamson, N. A. (2002). Ground motion evaluation procedures for performance-based design. Soil Dynamics and Earthquake Engineering, 22(9-12), 765–772. doi:10.1016/S0267-7261(02)00097-0
  • Sucuoǧlu, H., & Nurtuǧ, A. (1995). Earthquake ground motion characteristics and seismic energy dissipation. Earthquake Engineering & Structural Dynamics, 24(9), 1195–1213. doi:10.1002/eqe.4290240903
  • Taghavi, S., & Miranda, E. (2003). Response assessment of nonstructural building elements (PEER 2003/05). Berkeley, CA: Pacific Earthquake Engineering Research Center.
  • Takewaki, I., Fujita, K., & Yoshitomi, S. (2013). Uncertainties in long-period ground motion and its impact on building structural design: Case study of the 2011 Tohoku (Japan) earthquake. Engineering Structures, 49, 119–134. doi:10.1016/j.engstruct.2012.10.038
  • Tothong, P., & Luco, N. (2007). Probabilistic seismic demand analysis using advanced ground motion intensity measures. Earthquake Engineering & Structural Dynamics, 36(13), 1837–1860. doi:10.1002/eqe.696
  • Trifunac, M. D., & Brady, A. G. (1975). A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3), 581–626.
  • Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. doi:10.1002/eqe.141
  • Vamvatsikos, D., & Cornell, C. A. (2005). Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information. Earthquake Engineering & Structural Dynamics, 34(13), 1573–1600. doi:10.1002/eqe.496
  • Von Thun, J. L., Roehm, L. H., Scott, G. A., & Wilson, J. A. (1988). Earthquake ground motions for design and analysis of dams. Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-Motion Evaluation, 20, 463–481.
  • Vukobratović, V., & Fajfar, P. (2016). A method for the direct estimation of floor acceleration spectra for elastic and inelastic MDOF structures. Earthquake Engineering & Structural Dynamics, 45(15), 2495–2511. doi:10.1002/eqe.2779
  • Ye, L., Ma, Q., Miao, Z., Guan, H., & Zhuge, Y. (2013). Numerical and comparative study of earthquake intensity indices in seismic analysis. The Structural Design of Tall and Special Buildings, 22(4), 362–381. doi:10.1002/tal.693
  • Zhang, Y., He, Z., & Yang, Y. (2018). A spectral-velocity-based combination-type earthquake intensity measure for super high-rise buildings. Bulletin of Earthquake Engineering, 16(2), 643–677. doi:10.1007/s10518-017-0224-5
  • Zhou, Y., & Li, M. (2015). An area-based intensity measure for incremental dynamic analysis. Journal of Asian Architecture and Building Engineering, 14(2), 451–457. doi:10.3130/jaabe.14.451
  • Zhou, Y., Su, N., & Lu, X. (2013). Study on intensity measure of incremental dynamic analysis for high-rise structures. Journal of Building Structures, 34(2), 53–60. (in Chinese) doi:10.14006/j.jzjgxb.2013.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.