Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 4
1,227
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Performance-based seismic design of bridges: a global perspective and critical review of past, present and future directions

& ORCID Icon
Pages 539-554 | Received 31 Dec 2017, Accepted 20 Sep 2018, Published online: 02 Feb 2019

References

  • ACI-374. (2014). Acceptance criteria for moment frames based on structural testing and commentary. Farmington Hills, MI: American Concrete Institute.
  • AASHTO. (2013). AASHTO guide specifications for LRFD seismic bridge design. Washington, DC: American Association of State Highway Transportation Officials.
  • AASHTO. (2014a). AASHTO LRFD bridge design specifications. Washington, DC: American Association of State Highway Transportation Officials.
  • AASHTO. (2014b). Guide specifications for seismic isolation design. Washington, DC: American Association of State Highway Transportation Officials.
  • AASHTO. (1983). AASHTO LRFD bridge design specifications. Washington, DC: American Association of State Highway Transportation Officials.
  • Alam, M., Youssef, M., & Nehdi, M. (2007). Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: A review. Canadian Journal of Civil Engineering, 34 (9), 1075–1086. doi: 10.1139/l07-038
  • ACI-341. (2014). Analysis and design of seismic-resistant concrete bridge systems. Farmington Hills, MI: American Concrete Institute.
  • ACI-550.3. (2013). Design specification for unbonded post-tensioned precast concrete special moment frames satisfying ACI 374.1. Farmington Hills, MI: American Concrete Institute.
  • Akiyama, M., Frangopol, D., Deodatis, G., Ellingwood, B., & Frangopol, D. (2013). Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures: Life-cycle design of bridges under multiplehazards: Earthquake, tsunami, and continuous deterioration. New York: CRC Press.
  • ATC-13. (1985). Earthquake damage evaluation data for California. Redwood City, CA: Applied Technology Council.
  • ATC-40. (1996). Seismic evaluation and retrofit of existing concrete buildings. Redwood City, CA: Applied Technology Council.
  • Basoz, N., & Kiremidjian, A. S. (1998). Evaluation of bridge damage data from the Loma Prieta and Northridge, California earthquakes (Report No. MCEER-98–0004). Redwood City, CA: Multidisciplinary Center for Earthquake Engineering Research.
  • BCMOT. (2016). British Columbia Supplement to CHBDC S6-14. Victoria: British Columbia Ministry of Transportation and Infrastructure.
  • Berry, M., & Eberhard, M. (2003). Performance models for flexural damage in reinforced concrete columns (Report No. 2003/18). Berkeley, CA: Pacific Earthquake Engineering Center, University of California Berkeley.
  • Billah, A. M., & Alam, M. S. (2014). Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy. Earthquake Spectra, 31(3), 1515–1541. doi: 10.1193/112512EQS337M
  • Billah, A. M., & Alam, M. S. (2015). Seismic fragility assessment of highway bridges: A state-of-the-art review. Structure and Infrastructure Engineering, 11(6), 804–832.
  • Billah, A. M., & Alam, M. S. (2016a). Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. I: Development of performance-based damage states. Journal of Structural Engineering, 142(12), 04016140. doi: 10.1061/(ASCE)ST.1943-541X.0001458
  • Billah, A. M., & Alam, M. S. (2016b). Performance-based seismic design of shape memory alloy–reinforced concrete bridge piers. II: Methodology and design example. Journal of Structural Engineering, 142(12), 04016141. doi: 10.1061/(ASCE)ST.1943-541X.0001623
  • Billah, A. M., Alam, M. S., & Bhuiyan, M. R. (2013). Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion. Journal of Bridge Engineering, 18(10), 992–1004. doi: 10.1061/(ASCE)BE.1943-5592.0000452
  • Billington, S. L., & Yoon, J. (2004). Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, 9(4), 353–363. doi: 10.1061/(ASCE)1084-0702(2004)9:4(353)
  • Buckle, I. G., Constantinou, M. C., Diceli, M., & Ghasemi, H. (2006). Seismic isolation of highway bridges (Report No. MCEER-06-SP07). New York, NY: University of Buffalo.
  • Buckle, I. G., & Mayes, R. L. (1990). Seismic isolation: History, application, and performance—A world view. Earthquake Spectra, 6(2), 161–201. doi: 10.1193/1.1585564
  • Caltrans. (2013). Caltrans seismic design criteria. Sacramento, CA: California Department of Transportation.
  • Caltrans. (2016). Caltrans seismic design specifications for steel bridges. Sacramento, CA: California Department of Transportation.
  • Caltrans. (2010). Memo to designers 20-1 seismic design methodology. Sacramento, CA: California Department of Transportation.
  • CEN. (2005). Eurocode 8–design of Structures for earthquake resistance. Brussels: European Committee for Normalization.
  • Chang, S. E., & Shinozuka, M. (1996). Life-cycle cost analysis with natural hazard risk. Journal of Infrastructure Systems, 2(3), 118–126. doi: 10.1061/(ASCE)1076-0342(1996)2:3(118)
  • Chen, W.-F., & Duan, L. (2014). Bridge engineering handbook. Boca Raton, FL: CRC Press.
  • China-MOT. (2008). Chinese guidelines for seismic design of highway bridges. Beijing: Ministry of Transport.
  • Choi, E., DesRoches, R., & Nielson, B. (2004). Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 26(2), 187–199. doi: 10.1016/j.engstruct.2003.09.006
  • Chou, C. C., & Hsu, C. P. (2008). Hysteretic model development and seismic response of unbonded post‐tensioned precast cft segmental bridge columns. Earthquake Engineering & Structural Dynamics, 37(6), 919–934. doi: 10.1002/eqe.796
  • Christopoulos, C., Tremblay, R., Kim, H.-J., & Lacerte, M. (2008). Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation. Journal of Structural Engineering, 134(1), 96–107. doi: 10.1061/(ASCE)0733-9445(2008)134:1(96)
  • Chung, W.-J., Yun, C.-B., Kim, N.-S., & Seo, J.-W. (1999). Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures. Engineering Structures, 21(4), 365–379. doi: 10.1016/S0141-0296(97)00211-3
  • Cohagen, L. S., Pang, J. B., Stanton, J. F., & Eberhard, M. O. (2008). A precast concrete bridge bent designed to re-center after an earthquake Seattle, WA: TransNow.
  • Constantinou, M., Symans, M., Tsopelas, P., & Taylor, D. (1993). Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation. Proceedings ATC, 17(1), 581–592.
  • CSA. (2014). Canadian highway bridge design code. Mississauga: Canadian Standards Association.
  • Dawood, H., Elgawady, M., & Hewes, J. (2012). Behavior of segmental precast posttensioned bridge piers under lateral loads. Journal of Bridge Engineering, 17(5), 735–746. doi: 10.1061/(ASCE)BE.1943-5592.0000252
  • Devereux, C., Holden, T., Buchanan, A., & Pampanin, S. (2011). NMIT arts & media building-damage mitigation using post-tensioned timber walls. Paper presented at the Proceedings of 9th Pacific Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering, Wellington, New Zealand.
  • Di Sarno, L., & Manfredi, G. (2012). Experimental tests on full‐scale rc unretrofitted frame and retrofitted with buckling‐restrained braces. Earthquake Engineering & Structural Dynamics, 41(2), 315–333. doi: 10.1002/eqe.1131
  • El-Bahey, S., & Bruneau, M. (2011). Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents. Engineering Structures, 33(3), 1052–1061. doi: 10.1016/j.engstruct.2010.12.027
  • Elwood, K. J., & Moehle, J. P. (2005). Axial capacity model for shear-damaged columns. ACI Structural Journal, 102(4), 578.
  • Fajfar, P. (2000). A nonlinear analysis method for performance-based seismic design. Earthquake Spectra, 16(3), 573–592. doi: 10.1193/1.1586128
  • FEMA. (1997). HAZUS technical manual. Washington DC: Federal Emergency Management Agency.
  • FEMA. (2000). Commentary for the seismic rehabilitation of buildings. Washington, DC: FEMA-356, Federal Emergency Management Agency.
  • FHWA. (2006). Seismic Retrofitting Manual for Highway Structures: Part 1 – Bridges. McLean, VA: Federal Highway Administration.
  • FHWA-NHI. (2014). LRFD seismic analysis and design of bridges reference manual (Publication No. FHWA-NHI-15-004). Washington, DC: Department of Transportation Federal Highway Administration.
  • Feng, Y., Kowalsky, M. J., & Nau, J. M. (2015). Effect of seismic load history on deformation limit states for longitudinal bar buckling in RC circular columns. Journal of Structural Engineering, 141(8), 04014187. doi: 10.1061/(ASCE)ST.1943-541X.0001153
  • Gardoni, P., Der Kiureghian, A., & Mosalam, K. M. (2002). Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, 128(10), 1024–1038. doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024)
  • Giovinazzi, S., Wilson, T., Davis, C., Bristow, D., Gallagher, M., Schofield, A., Villemure, M., Eidinger, J., & Tang, A. (2011). Lifelines performance and management following the 22 February 2011 Christchurch earthquake, New Zealand: Highlights of resilience. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 402–417.
  • Ghobarah, A. (2001). Performance-based design in earthquake engineering: State of development. Engineering Structures, 23(8), 878–884. doi: 10.1016/S0141-0296(01)00036-0
  • Gibson, E. (1982). Working with the performance approach in building. Rotterdam: CIB Report Publication.
  • Gidaris, I., Padgett, J. E., Barbosa, A. R., Chen, S., Cox, D., Webb, B., & Cerato, A. (2017). Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: State-of-the-art review. Journal of Structural Engineering, 143(3), 04016188. doi: 10.1061/(ASCE)ST.1943-541X.0001672
  • Günay, S., & Mosalam, K. M. (2013). PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering, 17(6), 829–858. doi: 10.1080/13632469.2013.787377
  • Habel, K., Denarié, E., & Brühwiler, E. (2006). Structural response of elements combining ultrahigh-performance fiber-reinforced concretes and reinforced concrete. Journal of Structural Engineering, 132 (11), 1793–1800. doi: 10.1061/(ASCE)0733-9445(2006)132:11(1793)
  • “Hable” FEMA. (1996). NEHRP guidelines for the seismic rehabilitation of buildings. Washington DC: Federal Emergency Management Agency.
  • Hedayati Dezfuli, F., & Alam, M. S. (2015). Seismic vulnerability assessment of a multi-span continuous steel-girder bridge isolated by SMA wire-based natural rubber bearings (sma-nrb). Paper presented at the Structures Congress, Portland, Oregon.
  • Hedayati Dezfuli, F., & Alam, M. S. (2016). Effect of different steel‐reinforced elastomeric isolators on the seismic fragility of a highway bridge. Structural Control and Health Monitoring, 24(2), e1866. doi: 10.1002/stc.1866
  • Hamburger, R., Rojahn, C., Moehle, J., Bachman, R., Comartin, C., & Whittaker, A. (2004). The ATC-58 project: development of next-generation performance-based earthquake engineering design criteria for buildings. Paper presented at the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada.
  • Han, Q., Du, X., Liu, J., Li, Z., Li, L., & Zhao, J. (2009). Seismic damage of highway bridges during the 2008 wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 8(2), 263–273. doi: 10.1007/s11803-009-8162-0
  • Haque, A. R., & Alam, M. S. (2017). Hysteretic behaviour of a piston based self-centering (PBSC) bracing system made of superelastic SMA bars–A feasibility study. Structures, 12, 102–114. doi: 10.1016/j.istruc.2017.08.004
  • Hwang, H., Liu, J. B., & Chiu, Y.-H. (2001). Seismic fragility analysis of highway bridges. Mid-America Earthquake Center report: project MAEC RR-4. Urbana: MACE
  • Hewes, J. T., & Priestley, M. N. (2002). Seismic design and performance of precast concrete segmental bridge columns (Report No. SSRP 2001/25). La Jolla, CA: University of California San Diego.
  • Hieber, D. G., Wacker, J. M., Eberhard, M. O., & Stanton, J. F. (2005). Precast concrete pier systems for rapid construction of bridges in seismic regions (Report No. WA-RD 611.1). Seattle, WA: Washington State Department of Transportation.
  • Hijikata, K., Takahashi, M., Aoyagi, T., & Mashimo, M. (2012). Behavior of a base-isolated building at Fukushima Dai-ichi nuclear power plant during the Great East Japan Earthquake. Paper presented at the Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Tokyo, Japan.
  • Holden, T., Restrepo, J., & Mander, J. B. (2003). Seismic performance of precast reinforced and prestressed concrete walls. Journal of Structural Engineering, 129(3), 286–296. doi: 10.1061/(ASCE)0733-9445(2003)129:3(286)
  • ITG-5.1. (2008). Acceptance criteria for special unbonded post-tensioned precast structural walls based on validation testing. Farmington Hills, MI: American Concrete Institute.
  • ITG-5.2. (2009). Requirements for design of a special unbonded post-tensioned precast shear wall satisfying ACI ITG-5.1 and commentary. Farmington Hills, MI: American Concrete Institute.
  • JRC-Ispra. (2012). Seminar bridge design with Eurocodes. JRC Ispra Seminar, Ispra, Italy.
  • Kameshwar, S., & Padgett, J. (2014). Towards risk-based, multi-hazard-resistant design of bridges. Boston, MA: Structures Congress.
  • Kim, S.-H., & Feng, M. Q. (2003). Fragility analysis of bridges under ground motion with spatial variation. International Journal of Non-Linear Mechanics, 38(5), 705–721. doi: 10.1016/S0020-7462(01)00128-7
  • Kasai, K., Mita, A., Kitamura, H., Matsuda, K., Morgan, T. A., & Taylor, A. W. (2013). Performance of seismic protection technologies during the 2011 tohoku-oki earthquake. Earthquake Spectra, 29(s1), S265–S293. doi: 10.1193/1.4000131
  • Kawashima, K. (2000). Seismic design and retrofit of bridges. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 265–285.
  • Kawashima, K., Takahashi, Y., Ge, H., Wu, Z., & Zhang, J. (2009). Reconnaissance report on damage of bridges in 2008 Wenchuan, China, earthquake. Journal of Earthquake Engineering, 13(7), 965–996. doi: 10.1080/13632460902859169
  • Kawashima, K., Unjoh, S., Hoshikuma, J.-I., & Kosa, K. (2011). Damage of bridges due to the 2010 maule, chile, earthquake. Journal of Earthquake Engineering, 15(7), 1036–1068. doi: 10.1080/13632469.2011.575531
  • Kim, J., & Choi, H. (2004). Behavior and design of structures with buckling-restrained braces. Engineering Structures, 26(6), 693–706. doi: 10.1016/j.engstruct.2003.09.010
  • Kirchsteiger, C. (1999). On the use of probabilistic and deterministic methods in risk analysis. Journal of Loss Prevention in the Process Industries, 12(5), 399–419. doi: 10.1016/S0950-4230(99)00012-1
  • Kohno, M., & Collins, K. R. (2000). Merging life cycle cost analysis and performance-based design. Paper presented at the 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, Notre Dame, Indiana.
  • Kowalsky, M. J. (2000). Deformation limit states for circular reinforced concrete bridge columns. Journal of Structural Engineering, 126(8), 869–878. doi: 10.1061/(ASCE)0733-9445(2000)126:8(869)
  • Kurama, Y., Sause, R., Pessiki, S., & Lu, L.-W. (1999). Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls. ACI Structural Journal, 96(4), 622–632.
  • Kurama, Y. C., & Shen, Q. (2004). Posttensioned hybrid coupled walls under lateral loads. Journal of Structural Engineering, 130(2), 297–309. doi: 10.1061/(ASCE)0733-9445(2004)130:2(297)
  • Kurama, Y. C., Sritharan, S., Fleischman, R. B., Restrepo, J. I., Henry, R. S., Cleland, N. M., Ghosh, S., & Bonelli, P. (2018). Seismic-resistant precast concrete structures: State of the art. Journal of Structural Engineering, 144(4), 03118001. doi: 10.1061/(ASCE)ST.1943-541X.0001972
  • Kuwabara, T., Tamakoshi, T., Murakoshi, J., Kimura, Y., Nanazawa, T., & Hoshikuma, J-I. (2013). Outline of Japanese design specifications for highway bridges in 2012. Papre presented at the 44th Meeting, Joint Panel on Wind and Seismic Effects (UJNR), UJNR Gaithersburg.
  • Lee, W. K. (2007). Simulation and performance-based earthquake engineering assessment of self-centering post-tensioned concrete bridge systems (PhD Thesis). Stanford University, Stanford, CA.
  • Lehman, D., Moehle, J., Mahin, S., Calderone, A., & Henry, L. (2004). Experimental evaluation of the seismic performance of reinforced concrete bridge columns. Journal of Structural Engineering, 130(6), 869–879. doi: 10.1061/(ASCE)0733-9445(2004)130:6(869)
  • Li, L., Mander, J. B., & Dhakal, R. P. (2008). Bidirectional cyclic loading experiment on a 3D beam–column joint designed for damage avoidance. Journal of Structural Engineering, 134(11), 1733–1742. doi: 10.1061/(ASCE)0733-9445(2008)134:11(1733)
  • Lu, X., Han, B., Hori, M., Xiong, C., & Xu, Z. (2014). A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing. Advances in Engineering Software, 70, 90–103. doi: 10.1016/j.advengsoft.2014.01.010
  • Lu, J., Mackie, K. R., & Elgamal, A. (2011). BridgePBEE: OpenSees 3D pushover and earthquake analysis of single-column 2-span bridges (Beta 1.0) [Computer software]. Berkeley, CA: Pacific Earthquake Engineering Research (PEER) Center.
  • Mackie, K. R., & Stojadinovic, B. (2004). Residual displacement and post-earthquake capacity of highway bridges. Paper presented at the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada.
  • Mackie, K. R., & Stojadinović, B. (2005). Fragility basis for California highway overpass bridge seismic decision making (Report No. 2005/02). Berkeley, CA: University of California Berkeley, Pacific Earthquake Engineering Research Center.
  • Mackie, K. R., Wong, J. M., & Stojadinović, B. (2008). Integrated probabilistic performance-based evaluation of benchmark reinforced concrete bridges (Report No. 2007/09). Berkeley, CA: University of California Berkeley, Pacific Earthquake Engineering Research Center.
  • Maeda, M., Nakano, Y., & Lee, K. S. (2004). Post-earthquake damage evaluation for R/C buildings based on residual seismic capacity. Paper presented at the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada.
  • Mander, J. B., & Cheng, C.-T. (1997). Seismic resistance of bridge piers based on damage avoidance design (Report No. NCEER-97-0014). New York, NY: The State University of New York.
  • Mander, T. J., Rodgers, G. W., Chase, J. G., Mander, J. B., Macrae, G. A., & Dhakal, R. P. (2009). Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators. Journal of Structural Engineering, 135(11), 1390–1397. doi: 10.1061/(ASCE)ST.1943-541X.0000065
  • Marriott, D., Pampanin, S., Bull, D., & Palermo, A. (2008). Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions. Bulletin of the New Zealand Society for Earthquake Engineering, 41(2), 90–103.
  • Marriott, D., Pampanin, S., & Palermo, A. (2009). Quasi-static and pseudo-dynamic testing of unbonded post‐tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering & Structural Dynamics, 38(3), 331–354. doi: 10.1002/eqe.857
  • Marsh, M. L., & Stringer, S. J. (2013). Performance-based seismic bridge design (Vol. 440). Washington, DC: Transportation Research Board.
  • Masroor, A., & Mosqueda, G. (2012). Experimental simulation of base-isolated buildings pounding against moat wall and effects on superstructure response. Earthquake Engineering & Structural Dynamics, 41(14), 2093–2109. doi: 10.1002/eqe.2177
  • McGuire, R. K. (2001). Deterministic vs. probabilistic earthquake hazards and risks. Soil Dynamics and Earthquake Engineering, 21(5), 377–384. doi: 10.1016/S0267-7261(01)00019-7
  • Megget, L. M. (2006). From brittle to ductile: 75 years of seismic design in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 39(3), 158–169.
  • Metelli, G., Beschi, C., & Riva, P. (2011). Cyclic behaviour of a column to foundation joint for concrete precast structures. European Journal of Environmental and Civil Engineering, 15(9), 1297–1318. doi: 10.3166/ejece.15.1297-1318
  • Mitchell, D., Bruneau, M., Saatcioglu, M., Williams, M., Anderson, D., & Sexsmith, R. (1995). Performance of bridges in the 1994 northridge earthquake. Canadian Journal of Civil Engineering, 22(2), 415–427. doi: 10.1139/l95-050
  • Moehle, J., & Deierlein, G. G. (2004). A framework methodology for performance-based earthquake engineering. Paper presented at the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada.
  • Mokha, A., Constantinou, M., & Reinhorn, A. (1990). Teflon bearings in base isolation. I: Testing. Journal of Structural Engineering, 116(2), 438–454. doi: 10.1061/(ASCE)0733-9445(1990)116:2(438)
  • Moore, J., Kiremidjian, A., & Chiu, S. (2002). Seismic risk model for a designated highway system: Oakland/San Francisco Bay area (PEER Report No. 2002/02). Berkeley, CA: University of California Berkeley, Pacific Earthquake Engineering Research Center.
  • Motaref, S., Saiidi, M. S., & Sanders, D. H. (2011). Seismic response of precast bridge columns with energy dissipating joints (Report No. CA12-1999). Reno, NV: University of Nevada, Reno.
  • NCHRP. (2002). Comprehensive specification for the seismic design of bridges. Redwood City, CA: National Academy Press.
  • NYSDOT. (2015). New York State Department of Transportation LRFD bridge design specifications. New York, NY: State Department of Transportation.
  • NZT. (2016). New Zealand bridge manual. Wellington: Transit New Zealand.
  • ODOT. (2016). Bridge design and drafting manual. Salem, OR: Department of Transportation.
  • Padgett, J. E., & DesRoches, R. (2009). Retrofitted bridge fragility analysis for typical classes of multispan bridges. Earthquake Spectra, 25(1), 117–141. doi: 10.1193/1.3049405
  • Petrini, L., Maggi, C., Priestley, M. N., & Calvi, G. M. (2008). Experimental verification of viscous damping modeling for inelastic time history analyzes. Journal of Earthquake Engineering, 12(sup1), 125–145. doi: 10.1080/13632460801925822
  • Palermo, A., Pampanin, S., & Calvi, G. M. (2005). Concept and development of hybrid solutions for seismic resistant bridge systems. Journal of Earthquake Engineering, 9(6), 899–921. doi: 10.1080/13632460509350571
  • Palermo, A., Wotherspoon, L., Wood, J., Chapman, H., Scott, A., Hogan, L., Kivell, A., Camnasio, E., Yashinsky, M., & Bruneau, M. (2011). Lessons learnt from 2011 Christchurch earthquakes: Analysis and assessment of bridges. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 319–333.
  • Pekcan, G., Mander, J. B., & Chen, S. S. (1995). The seismic response of a 1:3 scale model RC structure with elastomeric spring dampers. Earthquake Spectra, 11(2), 249–267. doi: 10.1193/1.1585814
  • Perez, F. J., Sause, R., & Pessiki, S. (2007). Analytical and experimental lateral load behavior of unbonded posttensioned precast concrete walls. Journal of Structural Engineering, 133(11), 1531–1540. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1531)
  • Powell, G. H. (2008). Displacement-based seismic design of structures. Earthquake Spectra, 24(2), 555–557. doi: 10.1193/1.2932170
  • Priestley, M. N. (2000). Performance based seismic design. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 325–346.
  • Priestley, M. N., Calvi, M., Petrini, L., & Maggi, C. (2007). Effects of damping modelling on results of time-history analysis of RC bridges. Paper presented at the 1st US-Italy Seismic Bridge Workshop, Pavia, Italia.
  • Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. Hoboken, NJ: John Wiley & Sons.
  • Rahmzadeh, A., Alam, M. S., & Tremblay, R. (2018). Analytical prediction and finite element simulation of the lateral response of rocking steel bridge piers with energy dissipating steel bars. Journal of Structural Engineering, 144(11), 04018210. doi: 10.1061/(ASCE)ST.1943-541X.0002216
  • Reza, S. M., Alam, M. S., & Tesfamariam, S. (2014). Lateral load resistance of bridge piers under flexure and shear using factorial analysis. Engineering Structures, 59, 821–835. doi: 10.1016/j.engstruct.2013.12.009
  • Robinson, W. H. (1982). Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi: 10.1002/eqe.4290100408
  • Rojahn, C., King, S. A., Scholl, R. E., Kiremidjian, A. S., Reaveley, L. D., & Wilson, R. R. (1997). Earthquake damage and loss estimation methodology and data for Salt Lake County, Utah (ATC-36). Earthquake Spectra, 13(4), 623–642. doi: 10.1193/1.1585972
  • Sadrossadat-Zadeh, M., O'Brien, M., & Saiidi, M. S. (2007). A study of concrete bridge columns using innovative materials subjected to cyclic loading (Report No. TRB-NCHRP-116). Reno, NV: University of Nevada.
  • Saini, A., & Saiidi, S. (2013). Post-earthquake bridge damage mitigation–post-earthquake damage repair of various reinforced concrete bridge components. Paper presented at the European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey.
  • Sideris, P., Aref, A. J., & Filiatrault, A. (2014). Quasi-static cyclic testing of a large-scale hybrid sliding-rocking segmental column with slip-dominant joints. Journal of Bridge Engineering, 19(10), 04014036. doi: 10.1061/(ASCE)BE.1943-5592.0000605
  • Schanack, F., Valdebenito, G., & Alvial, J. (2012). Seismic damage to bridges during the 27 February 2010 magnitude 8.8 chile earthquake. Earthquake Spectra, 28(1), 301–315. doi: 10.1193/1.3672424
  • Sakai, J., & Mahin, S. A. (2004). Mitigation of residual displacements of circular reinforced concrete bridge columnsed. Paper presented at the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada.
  • SCDOT. (2008). The South Carolina Department of Transportation seismic design specifications for highway bridges (Specifications). Columbia, SC: Department of Transportation.
  • SEAOC. (1995). Vision 2000: Performance based seismic engineering of buildings (Vols. I and II), Conceptual framework. Sacramento, CA: Structural Engineers Association of California.
  • SeismoSoft. (2017). SeismoStruct (version 2017) [Computer software]. Italy: SeismoSoft, Pavia.
  • Shinozuka, M., Feng, M. Q., Kim, H.-K., & Kim, S.-H. (2000). Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics, 126(12), 1287–1295. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1287)
  • Shinozuka, M., Feng, M. Q., Lee, J., & Naganuma, T. (2000). Statistical analysis of fragility curves. Journal of Engineering Mechanics, 126(12), 1224–1231. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224)
  • Shinozuka, M., Zhou, Y., Banerjee, S., & Murachi, Y. (2006). Cost-effectiveness of seismic bridge retrofit. Paper presented at the 3rd International Conference on Bridge Maintenance, Safety and Management, Porto, Portugal.
  • Skinner, R., Bycroft, G., & Mcverry, G. (1976). A practical system for isolating nuclear power plants from earthquake attack. Nuclear Engineering and Design, 36(2), 287–297. doi: 10.1016/0029-5493(76)90013-3
  • Skinner, R., & Mcverry, G. (1975). Base isolation for increased earthquake resistance of buildings. Bulletin of the New Zealand National Society for Earthquake Engineering, 8(2), 93–101.
  • Terzic, V., & Stojadinovic, B. (2010). Post-earthquake traffic capacity of modern bridges in California (Report No. CA/PEER/2010-103). Berkeley, CA: UC Berkeley.
  • Terzic, V., & Stojadinovic, B. (2015). Evaluation of post-earthquake axial load capacity of circular bridge columns. ACI Structural Journal, 112(1), 23.
  • Thonstad, T., Mantawy, I. M., Stanton, J. F., Eberhard, M. O., & Sanders, D. H. (2016). Shaking table performance of a new bridge system with pretensioned rocking columns. Journal of Bridge Engineering, 21(4), 04015079. doi: 10.1061/(ASCE)BE.1943-5592.0000867
  • Tremblay, R., Bolduc, P., Neville, R., & Devall, R. (2006). Seismic testing and performance of buckling-restrained bracing systems. Canadian Journal of Civil Engineering, 33(2), 183–198. doi: 10.1139/l05-103
  • Tsai, M.-H., Wu, S.-Y., Chang, K.-C., & Lee, G. C. (2007). Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings. Engineering Structures, 29(5), 694–702. doi: 10.1016/j.engstruct.2006.05.025
  • Tsopelas, P., Constantinou, M., Kim, Y., & Okamoto, S. (1996a). Experimental study of fps system in bridge seismic isolation. Earthquake Engineering & Structural Dynamics, 25(1), 65–78. doi: 10.1002/(SICI)1096-9845(199601)25:1<65::AID-EQE536>3.0.CO;2-A
  • Tsopelas, P., Constantinou, M., Okamoto, S., Fujii, S., & Ozaki, D. (1996). Experimental study of bridge seismic sliding isolation systems. Engineering Structures, 18(4), 301–310. doi: 10.1016/0141-0296(95)00147-6
  • Tyler, R. (1978). Tapered steel energy dissipators for earthquake resistant structures. Bulletin of the New Zealand National Society for Earthquake Engineering, 11(4), 282–294.
  • Tyler, R., & Robinson, W. (1984). High-strain tests on lead-rubber bearings for earthquake loadings. Earthquake Engineering, 17(2), 90–105.
  • Vassiliou, M. F., & Makris, N. (2015). Dynamics of the vertically restrained rocking column. Journal of Engineering Mechanics, 141(12), 04015049. doi: 10.1061/(ASCE)EM.1943-7889.0000953
  • Warn, G., & Unal, M. (2014). Estimating the residual axial load capacity of flexure-dominated reinforced concrete bridge columns (PSU-2013-03). State College, PA: Mid-Atlantic Universities Transportation Center.
  • Wood, J., Chapman, H., & Prabhaharan, P. (2012). Performance of highway structures during the darfield and christchurch earthquakes of 4 September 2010 and 22 February 2011. New Zealand: NZ Transport Agency, Wellington.
  • Wen, Y. (2001). Minimum lifecycle cost design under multiple hazards. Reliability Engineering & System Safety, 73(3), 223–231. doi: 10.1016/S0951-8320(01)00047-3
  • WSDOT. (2016). Bridge Design Manual LRFD. Washington: Washington State Department of Transportation.
  • Yamashita, R., & Sanders, D. H. (2009). Seismic performance of precast unbonded prestressed concrete columns. ACI Structural Journal, 106(06), 821–830.
  • Zhang, Q., & Alam, M. S. (2016). Evaluating the seismic behavior of segmental unbounded posttensioned concrete bridge piers using factorial analysis. Journal of Bridge Engineering, 21(4), 04015073. doi: 10.1061/(ASCE)BE.1943-5592.0000851
  • Zhang, Q., Alam, M. S., Khan, S., & Jiang, J. (2016). Seismic performance comparison between force-based and performance-based design as per Canadian Highway Bridge Design Code (CHBDC) 2014. Canadian Journal of Civil Engineering, 43(8), 741–748. doi: 10.1139/cjce-2015-0419
  • Zhang, J., & Huo, Y. (2009). Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method. Engineering Structures, 31(8), 1648–1660. doi: 10.1016/j.engstruct.2009.02.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.