Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 4
705
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading

, ORCID Icon, , &
Pages 524-538 | Received 25 May 2018, Accepted 19 Sep 2018, Published online: 24 Jan 2019

References

  • AASHTO. (1990). Guide specifications for fatigue evaluation of existing steel bridges, interim specifications in 1993 and 1995. Washington, DC: Author.
  • Agerskov, H., & Nielsen, J. A. (1999). Fatigue in steel highway bridges under random loading. Journal of Structural Engineering, 125(2), 152–162. doi:10.1061/(ASCE)0733-9445(1999)125:2(152)
  • Banjara, N. K., & Sasmal, S. (2014). Remaining fatigue life of steel railway bridges under enhanced axle loads. Structure and Infrastructure Engineering, 10(2), 213–224. doi:10.1080/15732479.2012.726228
  • Bham, G. H., & Benekohal, R. F. (2004). A high fidelity traffic simulation model based on cellular automata and car-following concepts. Transportation Research Part C: Emerging Technologies, 12(1), 1–32. doi:10.1016/j.trc.2002.05.001
  • Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed.). Switzerland: Springer International Publishing.
  • BS5400, P. (1980). 10 Code of practice for fatigue. Steel, concrete and composite bridges. London, UK: British Standard Institution.
  • Chaboche, J. L., & Lesne, P. M. (1988). A non-linear continuous fatigue damage model. Fatigue & Fracture of Engineering Materials and Structures, 11(1), 1–17. doi:10.1111/j.1460-2695.1988.tb01216.x
  • Chan, T. H., Guo, L., & Li, Z. X. (2003). Finite element modeling for fatigue stress analysis of large suspension bridges. Journal of Sound and Vibration, 261(3), 443–464. doi:10.1016/S0022-460X(02)01086-6
  • Chen, Z. W., Xu, Y. L., Xia, Y., Li, Q., & Wong, K. Y. (2011). Fatigue analysis of long-span suspension bridges under multiple loading: Case study. Engineering Structures, 33(12), 3246–3256. doi:10.1016/j.engstruct.2011.08.027
  • Committee. (1982). Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division. Fatigue reliability 1–4. Journal of Structural Division, Proceedings of ASCE, 108(ST1), 3–88.
  • Connor, R. J., & Fisher, J. W. (2006). Identifying effective and ineffective retrofits for distortion fatigue cracking in steel bridges using field instrumentation. Journal of Bridge Engineering, 11(6), 745–752. doi:10.1061/(ASCE)1084-0702(2006)11:6(745)
  • Deng, L., & Cai, C. S. (2010). Development of dynamic impact factor for performance evaluation of existing multi-girder concrete bridges. Engineering Structures, 32(1), 21–31. doi:10.1016/j.engstruct.2009.08.013
  • Downing, S. D., & Socie, D. F. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31–40. doi:10.1016/0142-1123(82)90018-4
  • EN 1993-1-9 Eurocode 3 (2005). Design of steel structures – Part 1–9: Fatigue. Brussels, Belgium: CEN.
  • Farrar, C. R., & Lieven, N. A. (2007). Damage prognosis: the future of structural health monitoring.. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1851), 623–632. doi:10.1098/rsta.2006.1927
  • Ghosh, S., Bai, J., & Raghavan, P. (2007). Concurrent multi-level model for damage evolution in microstructurally debonding composites.. Mechanics of Materials, 39(3), 241–266. doi:10.1016/j.mechmat.2006.05.004
  • He, J., Lu, Z., & Liu, Y. (2012). New method for concurrent dynamic analysis and fatigue damage prognosis of bridges.. Journal of Bridge Engineering, 17(3), 396–408. doi:10.1061/(ASCE)BE.1943-5592.0000227
  • Hong, Y., Gu, Z., Fang, B., & Bai, Y. (1997). Collective evolution characteristics and computer simulation of short fatigue cracks.. Philosophical Magazine A, 75(6), 1517–1531. doi:10.1080/01418619708223741
  • Hong, Y., & Qiao, Y. (1999). An analysis on overall crack-number-density of short-fatigue-cracks.. Mechanics of Materials, 31(8), 525–534. doi:10.1016/S0167-6636(99)00014-9
  • Hussain, K., De Los Rios, E. R., & Navarro, A. (1993). A two-stage micromechanics model for short fatigue cracks.. Engineering Fracture Mechanics, 44(3), 425–436. doi:10.1016/0013-7944(93)90034-P
  • Kalhori, H., Alamdari, M. M., Zhu, X., Samali, B., & Mustapha, S. (2017). Non-intrusive schemes for speed and axle identification in bridge-weigh-in-motion systems.. Measurement Science and Technology, 28(2), 025102. doi:10.1088/1361-6501/aa52ec
  • Krajcinovic, D., & Lemaitre, J. (1987). Continuum damage mechanics: Theory and applications. Vienna: Springer
  • Kurata, S., & Nagatani, T. (2003). Spatio-temporal dynamics of jams in two-lane traffic flow with a blockage.. Physica A: Statistical Mechanics and Its Applications, 318(3–4), 537–550. doi:10.1016/S0378-4371(02)01376-6
  • Kwon, K., & Frangopol, D. M. (2010). Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data.. International Journal of Fatigue, 32(8), 1221–1232. doi:10.1016/j.ijfatigue.2010.01.002
  • Li, Z. X., Chan, T. H., & Ko, J. M. (2001). Fatigue analysis and life prediction of bridges with structural health monitoring data – Part I: Methodology and strategy. International Journal of Fatigue, 23(1), 45–53. doi:10.1016/S0142-1123(00)00068-2
  • Li, Z. X., Chan, T. H., Yu, Y., & Sun, Z. H. (2009). Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration – Part I: Modeling methodology and strategy. Finite Elements in Analysis and Design, 45(11), 782–794. doi:10.1016/j.finel.2009.06.013
  • Li, Z. X., Zhou, T. Q., Chan, T. H., & Yu, Y. (2007). Multi-scale numerical analysis on dynamic response and local damage in long-span bridges.. Engineering Structures, 29(7), 1507–1524. doi:10.1016/j.engstruct.2006.08.004
  • Liu, Y., Li, D., Zhang, Z., Zhang, H., & Jiang, N. (2017). Fatigue load model using the Weigh-in-Motion system for highway bridges in China.. Journal of Bridge Engineering, 22(6), 04017011. doi:10.1061/(ASCE)BE.1943-5592.0001048
  • Luo, C., Wei, J., Parra-Garcia, M., Chattopadhyay, A., & Peralta, P. (2009). Fatigue damage prediction in metallic materials based on multiscale modeling. AIAA Journal, 47(11), 2567–2576. doi:10.2514/1.39559
  • Ma, R., Xu, S., Wang, D., & Chen, A. (2018). Vehicle models for fatigue loading on steel box-girder bridges based on weigh-in-motion data. Structure and Infrastructure Engineering, 14(6), 701–713. doi:10.1080/15732479.2017.1359308
  • MacDougall, C., Green, M. F., & Shillinglaw, S. (2006). Fatigue damage of steel bridges due to dynamic vehicle loads.. Journal of Bridge Engineering, 11(3), 320–328. doi:10.1061/(ASCE)1084-0702(2006)11:3(320)
  • Maljaars, J., & Vrouwenvelder, A. C. W. M. (2014). Probabilistic fatigue life updating accounting for inspections of multiple critical locations.. International Journal of Fatigue, 68, 24–37. doi:10.1016/j.ijfatigue.2014.06.011
  • McLachlan, G., & Peel, D. (2004). Finite mixture models. Hoboken, NJ: John Wiley & Sons.
  • Miner, M. A., & Calif, S. M. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 67, 159–164.
  • Nowack, H., & Schulz, U. (1996). Significance of finite element methods (FEM) in fatigue analysis. Fatigue, 96, 1057–1068.
  • Nowak, A. S. (1993). Live load model for highway bridges.. Structural Safety, 13(1–2), 53–66. doi:10.1016/0167-4730(93)90048-6
  • Przybyla, C. P., & McDowell, D. L. (2010). Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. International Journal of Plasticity, 26(3), 372–394. doi:10.1016/j.ijplas.2009.08.001
  • Qu, X., & Qian, C. (2013). Multipoint constraint method and finite element analysis of whole heat exchangers. Pressure Vessel Technology, 2, 008.
  • Righiniotis, T. D., Imam, B. M., & Chryssanthopoulos, M. K. (2008). Fatigue analysis of riveted railway bridge connections using the theory of critical distances. Engineering Structures, 30(10), 2707–2715. doi:10.1016/j.engstruct.2008.03.005
  • Soliman, M., Frangopol, D. M., & Kown, K. (2013). Fatigue assessment and service life prediction of existing steel bridges by integrating SHM into a probabilistic bilinear S-N approach.. Journal of Structural Engineering, 139(10), 1728–1740. doi:10.1061/(ASCE)ST.1943-541X.0000584
  • Sun, B., & Li, Z. (2014). A multi-scale damage model for fatigue accumulation due to short cracks nucleation and growth. Engineering Fracture Mechanics, 127, 280–295. doi:10.1016/j.engfracmech.2014.06.014
  • Sun, B., & Li, Z. (2015). Adaptive image-based method for integrated multi-scale modeling of damage evolution in heterogeneous concrete.. Computers & Structures, 152, 66–81. doi:10.1016/j.compstruc.2015.02.015
  • Sun, B., Xu, Y. L., & Li, Z. (2016). Multi-scale fatigue model and image-based simulation of collective short cracks evolution process.. Computational Materials Science, 117, 24–32. doi:10.1016/j.commatsci.2016.01.021
  • Sun, B., Xu, Y. L., Zhu, Q., & Li, Z. (2017). Concurrent multi-scale fatigue damage evolution simulation method for long-span steel bridges. International Journal of Damage Mechanics, 28, 105678951775046. doi:10.1177/1056789517750460
  • Wang, T. L., Liu, C., Huang, D., & Shahawy, M. (2005). Truck loading and fatigue damage analysis for girder bridges based on weigh-in-motion data.. Journal of Bridge Engineering, 10(1), 12–20. doi:10.1061/(ASCE)1084-0702(2005)10:1(12)
  • Wang, W., & Deng, L. (2016). Impact factors for fatigue design of steel I – Girder bridges considering the deterioration of road surface condition.. Journal of Bridge Engineering, 2016, 21(5), 04016011. doi:10.1061/(ASCE)BE.1943-5592.0000885
  • Wang, W., Deng, L., & Shao, X. (2016). Number of stress cycles for fatigue design of simply-supported steel I – Girder bridges considering the dynamic effect of vehicle loading.. Engineering Structures, 2016, 110, 70–78. doi:10.1016/j.engstruct.2015.11.054
  • Xiao, X., Xu, Y. L., & Zhu, Q. (2015). Multiscale modeling and model updating of a cable-stayed bridge. II: Model updating using modal frequencies and influence lines.. Journal of Bridge Engineering, 20(10), 04014113. doi:10.1061/(ASCE)BE.1943-5592.0000723
  • Xu, Y. L., Chen, Z. W., & Xia, Y. (2012). Fatigue assessment of multi-loading suspension bridges using continuum damage model.. International Journal of Fatigue, 40, 27–35. doi:10.1016/j.ijfatigue.2012.01.015
  • Xu, Y. L., & Xia, Y. (2012). Structural health monitoring of long-span suspension bridges. London, UK: Spon Press.
  • Ya, S., Yamada, K., & Ishikawa, T. (2011). Fatigue evaluation of rib-to-deck welded joints of orthotropic steel bridge deck.. Journal of Bridge Engineering, 16(4), 492–499. doi:10.1061/(ASCE)BE.1943-5592.0000181
  • Ye, X. W., Ni, Y. Q., Wong, K. Y., & Ko, J. M. (2012). Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data. Engineering Structures, 45, 166–176. doi:10.1016/j.engstruct.2012.06.016
  • Zhang, J., & Au, F. T. K. (2017). Fatigue reliability assessment considering traffic flow variation based on weigh-in-motion data.. Advances in Structural Engineering, 20(1), 125–138. doi:10.1177/1369433216646011
  • Zhao, Z., & Haldar, A. (1996). Bridge fatigue damage evaluation and updating using non-destructive inspections.. Engineering Fracture Mechanics, 53(5), 775–788. doi:10.1016/0013-7944(95)00136-0
  • Zhu, Q., Xu, Y. L., & Xiao, X. (2015). Multiscale modeling and model updating of a cable-stayed bridge. I: Modeling and influence line analysis.. Journal of Bridge Engineering, 20(10), 04014112. doi:10.1061/(ASCE)BE.1943-5592.0000722

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.