Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 7
4,809
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

3D reconstruction of existing concrete bridges using optical methods

ORCID Icon, , & ORCID Icon
Pages 912-924 | Received 03 Jul 2018, Accepted 07 Dec 2018, Published online: 13 Apr 2019

References

  • Abdelbarr, M., Chen, Y. L., Jahanshahi, M. R., Masri, S. F., Shen, W.-M., & Qidwai, U. A. (2017). 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor. Smart Materials and Structures, 26(12), 125016. doi:10.1088/1361-665X/aa9450
  • Abu Dabous, S., Yaghi, S., Alkass, S., & Moselhi, O. (2017). Concrete bridge deck condition assessment using IR thermography and ground penetrating radar technologies. Automation in Construction, 81, 340–354. doi:10.1016/j.autcon.2017.04.006
  • Alani, A. M., Aboutalebi, M., & Kilic, G. (2014). Integrated health assessment strategy using NDT for reinforced concrete bridges. NDT & E International, 61, 80–94. doi:10.1016/j.ndteint.2013.10.001
  • Baqersad, J., Poozesh, P., Niezrecki, C., & Avitabile, P. (2017). Photogrammetry and optical methods in structural dynamics – A review. Mechanical Systems and Signal Processing, 86, 17–34. doi:10.1016/j.ymssp.2016.02.011
  • Bentley. (2018). ContextCapture - 3D reality modelling software. Retrieved from https://www.bentley.com/en/products/brands/contextcapture.
  • Bhatla, A., Choe, S. Y., Fierro, O., & Leite, F. (2012). Evaluation of accuracy of as-built 3D modeling from photos taken by handheld digital cameras. Automation in Construction, 28, 116–127. doi:10.1016/j.autcon.2012.06.003
  • Chen, S.-E., Liu, W., Bian, H., & Smith, B. (2012). 3D LiDAR scans for bridge damage evaluations. Forensic Engineering, 2012, 487–495.
  • Conde, B., Ramos, L. F., Oliveira, D. V., Riveiro, B., & Solla, M. (2017). Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Engineering Structures, 148, 621–638. doi:10.1016/j.engstruct.2017.07.011
  • Cultural Heritage Imaging. (2018). Photogrammetry - How to capture photos. Retrieved from http://culturalheritageimaging.org/Technologies/Photogrammetry/#how_to.
  • Duque, L., Seo, J., & Wacker, J. (2018). Synthesis of unmanned aerial vehicle applications for infrastructures. Journal of Performance of Constructed Facilities, 32(4), 04018046. doi:10.1061/(ASCE)CF.1943-5509.0001185
  • Fathi, H., & Brilakis, I. (2011). Automated sparse 3D point cloud generation of infrastructure using its distinctive visual features. Advanced Engineering Informatics, 25(4), 760–770. doi:10.1016/j.aei.2011.06.001
  • Franco, J. M., Mayag, B. M., Marulanda, J., & Thomson, P. (2017). Static and dynamic displacement measurements of structural elements using low cost RGB-D cameras. Engineering Structures, 153, 97–105. doi:10.1016/j.engstruct.2017.10.018
  • Fritsch, D., & Klein, M. (2018). 3D preservation of buildings – Reconstructing the past. Multimedia Tools and Applications, 77(7), 9153–9170. doi:10.1007/s11042-017-4654-5
  • Golparvar-Fard, M., Bohn, J., Teizer, J., Savarese, S., & Peña-Mora, F. (2011). Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Automation in Construction, 20(8), 1143–1155. doi:10.1016/j.autcon.2011.04.016
  • Graybeal, B. A., Phares, B. M., Rolander, D. D., Moore, M., & Washer, G. (2002). Visual inspection of highway bridges. Journal of Nondestructive Evaluation, 21(3), 67–83. doi:10.1023/A:1022508121821
  • Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2014). RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In O. Khatib, V. Kumar, and G. Sukhatme (Eds.), Experimental robotics: The 12th international symposium on experimental robotics (pp. 477–491). Berlin: Springer Berlin Heidelberg.
  • Hess, M., Petrovic, V., Yeager, M., & Kuester, F. (2018). Terrestrial laser scanning for the comprehensive structural health assessment of the Baptistery di San Giovanni in Florence, Italy: An integrative methodology for repeatable data acquisition, visualization and analysis. Structure and Infrastructure Engineering, 14(2), 247–263. doi:10.1080/15732479.2017.1349810
  • Hugenschmidt, J. (2002). Concrete bridge inspection with a mobile GPR system. Construction Building Materials, 16(3), 147–154. doi:10.1016/S0950-0618(02)00015-6
  • Jáuregui, D., Tian, Y., & Jiang, R. (2006). Photogrammetry applications in routine bridge inspection and historic bridge documentation. Transportation Research Record: Journal of the Transportation Research Board, 1958(1), 24–32. doi:10.1177/0361198106195800103
  • Jáuregui, D. V., White, K. R., Pate, J. W., & Woodward, C. B. (2005). Documentation of bridge inspection projects using virtual reality approach. Journal of Infrastructure Systems, 11(3), 172–179. doi:10.1061/(ASCE)1076-0342(2005)11:3(172)
  • Jáuregui, D. V., White, K. R., Woodward, C. B., & Leitch, K. R. (2003). Noncontact photogrammetric measurement of vertical bridge deflection. Journal of Bridge Engineering, 8(4), 212–222. doi:10.1061/(ASCE)1084-0702(2003)8:4(212)
  • Jiménez, A., & Gärdin, D. C. (2018). Optical methods for 3D-reconstruction of railway bridges: Infrared scanning, close range photogrammetry and Terrestrial laser scanning (MSc thesis). Luleå University of Technology, Luleå.
  • Khaloo, A., Lattanzi, D., Cunningham, K., Dell’Andrea, R., & Riley, M. (2018). Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling. Structure and Infrastructure Engineering, 14(1), 124–136. doi:10.1080/15732479.2017.1330891
  • Liu, W., Chen, S. E., Boyajian, D., & Hauser, E. (2010). Application of 3D LIDAR scan of a bridge under static load testing. Materials Evaluation, 68(12), 1359–1367.
  • Liu, W., Chen, S-e., & Hasuer, E. (2012). Bridge clearance evaluation based on terrestrial LIDAR scan. Journal of Performance of Constructed Facilities, 26(4), 469–477. doi:10.1061/(ASCE)CF.1943-5509.0000208
  • LLC, A. (2017). Agisoft PhotoScan – Fully automated professional photogrammetric kit. St. Petersburg: Agisoft PhotoScan.
  • Miranda, F., & Abreu, C. (2016). Handbook of research on computational simulation and modeling in engineering. Hershey, PA: IGI Global.
  • Omar, T., & Nehdi, M. L. (2017). Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Automation in Construction, 83, 360–371. doi:10.1016/j.autcon.2017.06.024
  • Phares, B. M., Washer, G. A., Rolander, D. D., Graybeal, B. A., & Moore, M. (2004). Routine highway bridge inspection condition documentation accuracy and reliability. Journal of Bridge Engineering, 9(4), 403–413. doi:10.1061/(ASCE)1084-0702(2004)9:4(403)
  • Riveiro, B., González-Jorge, H., Varela, M., & Jauregui, D. V. (2013). Validation of terrestrial laser scanning and photogrammetry techniques for the measurement of vertical underclearance and beam geometry in structural inspection of bridges. Measurement, 46(1), 784–794. doi:10.1016/j.measurement.2012.09.018
  • Riveiro, B., Jauregui, D. V., Arias, P., Armesto, J., & Jiang, R. (2012). An innovative method for remote measurement of minimum vertical underclearance in routine bridge inspection. Automation in Construction, 25, 34–40. doi:10.1016/j.autcon.2012.04.008
  • Riveiro, B., & Solla, M. (2016). Non-destructive techniques for the evaluation of structures and infrastructure. London: CRC Press.
  • Stavroulaki, M. E., Riveiro, B., Drosopoulos, G. A., Solla, M., Koutsianitis, P., & Stavroulakis, G. E. (2016). Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Advances in Engineering Software, 101, 136–148. doi:10.1016/j.advengsoft.2015.12.007
  • Takimoto, R. Y., Tsuzuki, M. D S. G., Vogelaar, R., Martins, T. D C., Sato, A. K., Iwao, Y., Gotoh, T., & Kagei, S. (2016). 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor. Mechatronics, 35, 11–22. doi:10.1016/j.mechatronics.2015.10.014
  • Vaghefi, K., Ahlborn, T. M., Harris, D. K., & Brooks, C. N. (2015). Combined imaging technologies for concrete bridge deck condition assessment. Journal of Performance of Constructed Facilities, 29(4), 04014102. doi:10.1061/(ASCE)CF.1943-5509.0000465
  • Vaghefi, K., Oats, R. C., Harris, D. K., Ahlborn, T. M., Brooks, C. N., Endsley, K. A., Roussi, C., Shuchman, R., Burns, J. W., & Dobson, R. (2012). Evaluation of commercially available remote sensors for highway bridge condition assessment. Journal of Bridge Engineering, 17(6), 886–895. doi:10.1061/(ASCE)BE.1943-5592.0000303
  • Watson, C., Chen, S.-E., Bian, H., & Hauser, E. (2012). Three-dimensional terrestrial LIDAR for operational bridge clearance measurements. Journal of Performance of Constructed Facilities, 26(6), 803–811. doi:10.1061/(ASCE)CF.1943-5509.0000277
  • Weinmann, M. (2016). Reconstruction and analysis of 3D scenes. New York, NY: Springer International Publishing. doi:10.1007/978-3-319-29246-5