Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 9
413
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Reliability analysis of girder bridge piers subjected to barge collisions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1200-1220 | Received 14 Sep 2018, Accepted 28 Feb 2019, Published online: 10 May 2019

References

  • American Association of State Highway and Transportation Officials (AASHTO). (1991). Guide specification and commentary for vessel collision design of highway bridges. Washington DC: Author.
  • American Association of State Highway and Transportation Officials (AASHTO) (2009). Guide Specifications and Commentary for Vessel Collision Design of Highway Bridges. 2nd edition. Washington DC: Author.
  • American Concrete Institute (ACI 318-14) (2014). Building code requirements for structural concrete and commentary. Farmington Hills, MI: Author.
  • Cheng, J. (2014). Reliability analysis of the Sutong Bridge Tower under ship impact loading. Structure and Infrastructure Engineering, 10(10), 1320–1329. doi: 10.1080/15732479.2012.757792
  • Consolazio, G. R., Cook, R. A., & McVay, M. C. (2006). Barge impact testing of the St. George Island Causeway Bridge – Phase III: Physical testing and data interpretation, structures (Research Report No. BC-354 RPWO–76), Engineering and Industrial Experiment Station, University of Florida, Gainesville, Florida.
  • Consolazio, G. R., & Cowan, D. R. (2003). Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design. Computers & Structures, 81(8), 547–557. doi: 10.1016/S0045-7949(02)00474-1
  • Consolazio, G. R., Davidson, M. T., & Cowan, D. R. (2009). Barge bow force–deformation relationships for barge–bridge collision analysis. Transportation Research Record: Journal of the Transportation Research Board, 2131(1), 3–14. doi: 10.3141/2131-01
  • Consolazio, G. R., & Cowan, D. R. (2005). Numerically efficient dynamic analysis of barge collisions with bridge piers. Journal of Structural Engineering, 131(8), 1256–1266. doi: 10.1061/(ASCE)0733-9445(2005)131:8(1256)
  • Consolazio, G. R., & Davidson, M. T. (2008). Simplified dynamic barge collision analysis for bridge design. Transportation Research Record: Journal of the Transportation Research Board, 2050(1), 13–25. doi: 10.3141/2050-02
  • Consolazio, G. R., McVay, M. C., Cowan, D. R., Davidson, M. T., & Getter, D. J. (2008). Development of improved bridge design provisions for barge impact loading (Research Report No. BD–545 RPWO 29), Engineering and Industrial Experiment Station, University of Florida, Gainesville, Florida.
  • Davidson, M. T., Consolazio, G. R., Getter, D. J., & Shah, F. D. (2013). Probability of collapse expression for bridges subject to barge collision. Journal of Bridge Engineering, 18(4), 287–296. doi: 10.1061/(ASCE)BE.1943-5592.0000376
  • Ellingwood, B. R., & Galambos, T. V. (1982). Probability-based criteria for structural design. Structural Safety, 1(1), 15–26. doi: 10.1016/0167-4730(82)90012-1
  • Getter, D., & Consolazio, G. (2011). Relationships of barge bow force-deformation for bridge design: Probabilistic consideration of oblique impact scenarios. Transportation Research Record: Journal of the Transportation Research Board, 2251(1), 3–15. doi: 10.3141/2251-01
  • Gholipour, G., Zhang, C., & Mousavi, A. A. (2019). Analysis of girder bridge pier subjected to barge collision considering the superstructure interactions: the case study of a multiple-pier bridge system. Structure and Infrastructure Engineering, 15(3), 392–412. doi: 10.1080/15732479.2018.1543710
  • Gholipour, G., Zhang, C., & Li, M. (2018). Effects of soil − pile interaction on the response of bridge pier to barge collision using energy distribution method. Structure and Infrastructure Engineering, 14(11), 1520–1534. doi: 10.1080/15732479.2018.1450427
  • Gholipour, G., Zhang, C., & Mousavi, A. A. (2018). Effects of axial load on nonlinear response of RC columns subjected to lateral impact load: Ship-pier collision. Engineering Failure Analysis, 91, 397–418. doi: 10.1016/j.engfailanal.2018.04.055
  • Ghosn, M., Moses, F., & Wang, J. (2003). Design of highway bridges for extreme events, NCHRP Report 489, Transportation Research Board of the National Academies, Washington DC.
  • Haldar, A., & Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis. John Wiley & Sons. New York, USA.
  • Guangzhou Daily. (2007). Retrieved from http://news.sohu.com/20070615/n250593101.shtml.
  • ISO 2394. (2015). General principles on reliability for structures, 4th edition, Zurich: ISO.
  • JCSS. (2006). Probabilistic model code, Joint Committee on Structural Safety, ISBN. 978–3–909386–79–6, Zurich, Switzerland.
  • Jiang, H., Wang, J., Chorzepa, M. G., & Zhao, J. (2017). Numerical investigation of progressive collapse of a multispan continuous bridge subjected to vessel collision. Journal of Bridge Engineering, 22(5), 04017008. doi: 10.1061/(ASCE)BE.1943-5592.0001037
  • Kameshwar, S., & Padgett, J. E. (2018). Response and fragility assessment of bridge columns subjected to barge-bridge collision and scour. Engineering Structures, 168, 308–319. doi: 10.1016/j.engstruct.2018.04.082
  • Kantrales, G. C., Consolazio, G. R., Wagner, D., & Fallaha, S. (2016). Experimental and analytical study of high-level barge deformation for barge–bridge collision design. Journal of Bridge Engineering, 21(2), 04015039. doi: 10.1061/(ASCE)BE.1943-5592.0000801
  • Koh, H. M., Lim, J. H., Kim, H., Yi, J., Park, W., & Song, J. (2017). Reliability-based structural design framework against accidental loads–ship collision. Structure and Infrastructure Engineering, 13(1), 171–180. doi: 10.1080/15732479.2016.1198398
  • Kunz, C. U. (1998). Ship bridge collision in river traffic, analysis and design practice, ship collision analysis. In H. Gluver and D. Olsen (Eds.), Rotterdam, Netherlands: Balkema, 13–22.
  • Lu, Y. E., & Zhang, L. M. (2013). Progressive collapse of a drilled-shaft bridge foundation under vessel impact. Ocean Engineering, 66, 101–112. doi: 10.1016/j.oceaneng.2013.04.007
  • Luperi, F. J., & Pinto, F. (2016). Structural behavior of barges in high-energy collisions against bridge piers. Journal of Bridge Engineering, 21(2), 04015049. doi: 10.1061/(ASCE)BE.1943-5592.0000789
  • LS-DYNA 971. (2015). Livermore Software Technology Corporation, Livermore, CA.
  • LSTC. (2016). LS-DYNA keyword user’s manual ver. 971. Livermore, CA: Livermore Software Technology Corporation.
  • MATLAB. (2016). Ver. 9.1.0. Natick, MA: The MathWorks Inc.
  • Nowak, A. S., & Collins, K. R. (2000). Reliability of structures. New York: McGraw Hill.
  • Nowak, A. S., & Szerszen, M. M. (2003). Calibration of design code for buildings (ACI 318): Part 1-Statistical models for resistance. ACI Structural Journal, 100(3), 377–382.
  • Rausand, M., & Hoyland, A. (2004). System reliability theory: Models, statistical methods, and applications, 2nd edition. New York: John Wiley and Sons.
  • Sha, Y., & Hao, H. (2012). Nonlinear finite element analysis of barge collision with a single bridge pier. Engineering Structures, 41, 63–76. doi: 10.1016/j.engstruct.2012.03.026
  • Shao, J. H., Zhao, R. D., & Geng, B. (2015). Probabilistic analysis of bridge collapse during ship collisions based on reliability theory. Journal of Highway and Transportation Research and Development (English Edition)), 9(1), 55–62. doi: 10.1061/JHTRCQ.0000425
  • Wang, W., & Morgenthal, G. (2018). Reliability analyses of RC bridge piers subjected to barge impact using efficient models. Engineering Structures, 166, 485–495. doi: 10.1016/j.engstruct.2018.03.089
  • Yuan, P., & Harik, I. E. (2010). Equivalent barge and flotilla impact forces on bridge piers. Journal of Bridge Engineering, 15(5), 523–532. doi: 10.1061/(ASCE)BE.1943-5592.0000080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.