Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 8
651
Views
46
CrossRef citations to date
0
Altmetric
Articles

Stability of a train running over the Volga river high-speed railway bridge during crosswinds

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1121-1137 | Received 16 Apr 2019, Accepted 19 Aug 2019, Published online: 07 Nov 2019

References

  • Andersson, E., Häggström, J., Sima, M., & Stichel, S. (2004). Assessment of train-overturning risk due to strong cross-winds. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3), 213–223. doi:10.1243/0954409042389382
  • ANSYS®. (2018). Canonsburg. PA, USA: Academic Research, Release 19.2, ANSYS Inc.
  • Antolín, P. (2013). Efectos dinámicos laterales en vehículos y puentes ferroviarios sometidos a la acción de vientos transversales. PhD Thesis, Universidad Politécnica de Madrid, Madrid, Spain.
  • Baker, C. J., & Sterling, M. (2009). Aerodynamic forces on multiple unit trains in cross winds. Journal of Fluids Engineering, 131(10), 101103(101101)–101103(101114). doi:10.1115/1.3222908
  • Cheli, F., Giappino, S., Rosa, L., Tomasini, G., & Villani, M. (2013). Experimental study on the aerodynamic forces on railway vehicles in presence of turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 123(Part B), 311–316. doi:10.1016/j.jweia.2013.09.013
  • Clough, R. W., & Penzien, J. (2003). Dynamics of structures. New York City, NY, USA: Third Edition, McGraw-Hill, Inc.
  • EN 13848-5. (2005). Railway applications - Track - Track geometry quality - Part 5: Geometric quality assessment. Brussels: European Committee for Standarization (CEN).
  • EN 14067-6. (2010). Railway applications - Aerodynamics - Part 6: Requirements and test procedures for cross wind assessment. Brussels: European Committee for Standarization (CEN).
  • EN 14363. (2016). Railway applications - Testing and Simulation for the acceptance of running characteristics of railway vehicles - Running Behaviour and stationary tests. Brussels: European Committee for Standarization (CEN).
  • EN 1991-1-4. (2010). Eurocode 1: actions on structures - part 1-4: general actions - wind actions. Brussels: European Committee for Standarization (CEN).
  • EN 1991-2. (2003). Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges. Brussels: European Committee for Standarization (CEN).
  • ERRI D 202/RP 11. (1999). Improved knowledge of forces in CWR track (including switches): Parametric study and sensivity analysis of CWERRI. Utrecht: European Rail Research Institute.
  • ERRI D 214/RP 5 (1999). Rail bridges for speeds > 200 km/h: Numerical investigation of the effect of track irregularities at bridge resonance. Utrecht: European Rail Research Institute.
  • Fujii, T., Maeda, T., Ishida, H., Imai, T., Tanemoto, K., & Suzuki, M. (1999). Wind-induced accidents of train/vehicles and their measures in Japan. Quarterly Report of Rtri, 40(1), 50–55. doi:10.2219/rtriqr.40.50
  • Guo, W. W., Xia, H., & Youlin, X. (2010). Running safety analysis of a train on the Tsing Ma Bridge under turbulent winds. Earthquake Engineering and Engineering Vibration, 9(3), 307–318. doi:10.1007/s11803-010-0015-3
  • Guo, W. W., Xia, H., Karoumi, R., Zhang, T., & Li, X. (2015). Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds. Wind and Structures, 20(2), 213–236. doi:10.12989/was.2015.20.2.213
  • Hertz, H. (1882). Ueber die Berührung fester elastischer Körper [On the contact of elastic solids]. Journal Für Die Reine Und Angewandte Mathematik, 92, 156–171.
  • Hu, B., & Schiehlen, W. (1997). On the simulation of stochastic processes by spectral representation. Probabilistic Engineering Mechanics, 12(2), 105–113. doi:10.1016/S0266-8920(96)00039-2
  • Hughes, T. J. R. (2000). The finite element method: Linear static and dynamic finite element analysis. New York City, NY, USA: Dover Publications.
  • Kalker, J. J. (1990). Three-dimensional elastic bodies in rolling contact. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Kalker, J. J. (1996). Book of tables for the Hertzian creep-force law. Paper presented at the 2nd Mini Conference on Contact Mechanics and Wear of Wheel/Rail Systems, Budapest, Hungary.
  • Li, Y., Qiang, S., Liao, H., & Xu, Y. L. (2005). Dynamics of wind–rail vehicle–bridge systems. Journal of Wind Engineering and Industrial Aerodynamics, 93 (6), 483–507. doi:10.1016/j.jweia.2005.04.001
  • MATLAB®. (2018). Release R2018a. Natick, MA, USA: The MathWorks Inc.
  • Matsumoto, N., Tanabe, M., Sogabe, M., & Wakui, H. (2004). Running safety analysis of vehicles on structures subjected to earthquake motion. Quarterly Report of Railway Technical Research Institute, 45(3), 116–122. doi:10.2219/rtriqr.45.116
  • Montenegro, P. A. (2015). A methodology for the assessment of the train running safety on bridges. PhD Thesis, Faculty of Engineering of the University of Porto, Porto, Portugal.
  • Montenegro, P. A., Neves, S. G. M., Azevedo, A. F. M., & Calçada, R. (2013). A nonlinear vehicle-structure interaction methodology with wheel-rail detachment and reattachment. Paper presented at the COMPDYN 2013 - 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos, Greece.
  • Montenegro, P. A., Neves, S. G. M., Calçada, R., Tanabe, M., & Sogabe, M. (2015). Wheel-rail contact formulation for analyzing the lateral train-structure dynamic interaction. Computers & Structures, 152, 200–214. doi:10.1016/j.compstruc.2015.01.004
  • Neves, S. G. M., Montenegro, P. A., Azevedo, A. F. M., & Calçada, R. (2014). A direct method for analyzing the nonlinear vehicle–structure interaction. Engineering Structures, 69, 83–89. doi:10.1016/j.engstruct.2014.02.027
  • Olmos, J. M., & Astiz, M. A. (2018). Improvement of the lateral dynamic response of a high pier viaduct under turbulent wind during the high-speed train travel. Engineering Structures, 165, 368–385. doi:10.1016/j.engstruct.2018.03.054
  • Olmos, J. M., & Astiz, M. A. (2018). Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct. Journal of Sound and Vibration, 419, 63–89. doi:10.1016/j.jsv.2017.12.038
  • Quost, X. (2005). Mod´elisation de l’effet du vent sur les trains `a grande vitesse. PhD Thesis, Ecole Centrale de Lyon, Lyon, France.
  • Salcher, P., & Adam, C. (2015). Modeling of dynamic train–bridge interaction in high-speed railways. Acta Mechanica, 226(8), 2473–2495. doi:10.1007/s00707-015-1314-6
  • Shabana, A., Zaazaa, K. E., & Sugiyama, H. (2008). Railroad vehicle dynamics: A computational approach. Boca Raton, USA: CRC Press.
  • TSI. (2002). Technical specification for interoperability relating to the infrastructure subsystem of the trans-European high-speed rail system. Brussels: Official Journal of the European Union.
  • UIC 774-3-R. (2001). Track/bridge interaction - Recommendations for calculation (2nd ed). Paris: International Union of Railways (UIC).
  • Wu, Y. S., & Yang, Y. B. (2003). Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Engineering Structures, 25(2), 251–265. doi:10.1016/S0141-0296(02)00147-5
  • Xia, H., Guo, W. W., Zhang, N., & Sun, G. J. (2008). Dynamic analysis of a train–bridge system under wind action. Computers & Structures, 86(19–20), 1845–1855. doi:10.1016/j.compstruc.2008.04.007
  • Xu, L., & Zhai, W. (2018). A model for vehicle–track random interactions on effects of crosswinds and track irregularities. Vehicle System Dynamics, 57, 1–26. doi:10.1080/00423114.2018.1469775
  • Zeng, Q., Stoura, C. D., & Dimitrakopoulos, E. G. (2018). A localized lagrange multipliers approach for the problem of vehicle-bridge-interaction. Engineering Structures, 168, 82–92. doi:10.1016/j.engstruct.2018.04.040
  • Zhai, W., Wang, K., & Cai, C. (2009). Fundamentals of vehicle-track coupled dynamics. Vehicle System Dynamics, 47(11), 1349–1376. doi:10.1080/00423110802621561
  • Zhai, W., We, K., Song, X., & Shao, M. (2015). Experimental investigation into ground vibrations induced by very high speed trains on a non-ballasted track. Soil Dynamics and Earthquake Engineering, 72, 24–36. doi:10.1016/j.soildyn.2015.02.002
  • Zhang, T., Xia, H., & Guo, W. W. (2013). Analysis on running safety of train on bridge with wind barriers subjected to cross wind. Wind and Structures, 17(2), 203–225. doi:10.12989/was.2013.17.2.203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.