Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 8
819
Views
15
CrossRef citations to date
0
Altmetric
Articles

Degradation of coatings for steel in environments susceptible to corrosion associated with fouling

ORCID Icon, &
Pages 1186-1200 | Received 20 Jul 2019, Accepted 20 Sep 2019, Published online: 26 Nov 2019

References

  • Al-Darbi, M. M., Muntasser, Z. M., Tango, M., & Islam, M. R. (2002). Control of microbial corrosion using coatings and natural additives. Energy Sources, 24(11), 1009–1018. doi:10.1080/00908310290086941
  • Borenstein, S. (1994). Microbiologically influenced corrosion handbook. Cambridge, England: Woodhead Publishing Ltd.
  • Brady, R. F. (2005). Fouling-release coatings for warships. Defence Science Journal, 55(1), 75–81. doi:10.14429/dsj.55.1971
  • Castro, P., Sagues, A. A., Moreno, E. I., Maldonado, L., & Genescá, J. (1996). Characterization of activated titanium solid reference electrodes for corrosion testing of steel in concrete. Corrosion, 52(8), 609–617. doi:10.5006/1.3292151
  • Chambers, L. D., Stokes, K. R., Walsh, F. C., & Wood, R. J. (2006). Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 201(6), 3642–3652. doi:10.1016/j.surfcoat.2006.08.129
  • Characklis, W. G., & James D. Bryers, I. B. (2009). Fouling biofilm development: A process analysis. Biotechnology and Bioengineering, 102(2), 309– 347. doi:10.1002/bit.22227
  • Crisp, D. J. (1974). Factors influencing the settlement of marine invertebrate larvae. In P. T. Grant & A. M. Mackie (eds), Chemoreception in marine organisms (pp. 177-265). London and New York: Academic Press.
  • De Brito, L. V., Coutinho, R., Cavalcanti, E. H., & Benchimol, M. (2007). The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel. Biofouling, 23(3), 193–201. doi:10.1080/08927010701258966
  • De Messano, L. V., Reznik, L. Y., Sathler, L., & Coutinho, R. (2014). Evaluation of biocorrosion on stainless steels using laboratory-reared barnacle Amphibalanus amphitrite. Anti-Corrosion Methods and Materials, 61(6), 402–408. doi:10.1108/ACMM-07-2013-1278
  • De Messano, L. V., Sathler, L., Reznik, L. Y., & Coutinho, R. (2009). The effect of biofouling on localized corrosion of the stainless steels N08904 and UNS S32760. International Biodeterioration & Biodegradation, 63(5), 607–614. doi:10.1016/j.ibiod.2009.04.006
  • Dexter, S. C. (1993). Role of microfouling organisms in marine corrosion. Biofouling, 7(2), 97–127. doi:10.1080/08927019309386247
  • Dexter, S. C., & LaFontaine, J. P. (1998). Effect of natural marine biofilms on galvanic corrosion. CORROSION, 54(11), 851–861. doi:10.5006/1.3284804
  • Downs, R., Dean, J., Downer, A., & Perry, J. (2017). Determination of the Biocide Econea® in artificial seawater by solid phase extraction and high-performance liquid chromatography mass spectrometry. Separations, 4(4), 34. doi:10.3390/separations4040034
  • Eashwar, M., Subramanian, G., & Chandrasekaran, P. (1990). Marine fouling and corrosion studies in the coastal waters of Mandapam, India. Bulletin of Electrochemistry, 6(8), 699–702.
  • Egan, S., James, S., Holmström, C., & Kjelleberg, S. (2002). Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environmental Microbiology, 4(8), 433–442. doi:10.1046/j.1462-2920.2002.00322.x
  • Flemming, H. C., Murthy, P. S., Venkatesan, R., & Cooksey, K. (2009). Marine and industrial biofouling (Vol. 333). Berlin: Springer.
  • Hellio, C., Maréchal, J. P., Da Gama, B. A. P., Pereira, R. C., & Clare, A. S. (2009). Natural marine products with antifouling activities. In C. Hellio & D. Yebra (Eds.), Advances in marine antifouling coatings and technologies (pp. 572–622). Cambridge, UK: Woodhead Publishing.
  • Hsu, C. H., & Mansfeld, F. (2001). Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion, 57(9), 747–748. doi:10.5006/1.3280607
  • Jones, D. A. (1992). Principles and prevention of corrosion. New York: Macmillan publishing company.
  • Jones, J., Little, B., & Mansfeld, F. (1992). ESEM/EDS, SEM/EDS and EIS studies of coated 4140 steel exposed to marine, mixed microbial communities including SRB. International power generation conference, Atlanta-Georgia.
  • Kelly, R. G., Scully, J. R., Shoesmith, D., & Buchheit, R. G. (2002). Electrochemical techniques in corrosion science and engineering. New York, NY: Marcel Dekker.
  • Keough, M. J., & Raimondi, P. T. (1995). Responses of settling invertebrate larvae to bioorganic films: effects of different types of films. Journal of Experimental Marine Biology and Ecology, 185()2, 235–253. doi:10.1016/0022-0981(94)00154-6
  • LaQue, F. L. (1975). Corrosion: Causes and prevention. New York, NY: Wiley. doi:10.1093/sw/21.2.171
  • Lejars, M., Margaillan, A., & Bressy, C. (2012). Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chemical Reviews, 112(8), 4347–4390. doi:10.1021/cr200350v
  • Little, B. J., & Lee, J. S. (2007). Microbiologically influenced corrosion. Hoboken, NJ: John Wiley & Sons (Vol. 3).
  • Löschau, M., & Krätke, R. (2005). Efficacy and toxicity of self-polishing biocide-free antifouling paints. Environmental Pollution, 138(2), 260–267. doi:10.1016/j.envpol.2005.04.015
  • Mansfeld, F. (1995). Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of Applied Electrochemistry, 25(3), 187–202. doi:10.1007/BF00262955
  • Mansfeld, F., Lee, C. C., Han, L. T., Zhang, G., & Little, B. (1998). The impact of microbiologically influenced corrosion on protective polymer coatings (Report No. ADA353932). Arlington (VA): University of Southern California Los Angeles, Department of Materials Science and Engineering.
  • Matsukawa, Y., Chuta, H., Miyashita, M., Yoshikawa, M., Miyata, Y., & Asakura, S. (2011). Galvanic series of metals conventionally used in tap water with and without flow and its comparison to that in seawater. CORROSION, 67(12), 25004–25001. doi:10.5006/1.3665358
  • Munger, C. G. (2014). Corrosion prevention by protective coatings. Houston, TX: Nace Press.
  • Muntasser Z, Al-Darbi M, Tango M and Islam MR. 2002. Prevention of microbiologically influenced corrosion using coatings. In CORROSION 2002. Houston, TX: NACE International City. Paper No. 02029. 8pp.
  • Neville, A., & Hodgkiess, T. (1998). Comparative study of stainless steel and related alloy corrosion in natural sea water. British Corrosion Journal, 33(2), 111–120. doi:10.1179/bcj.1998.33.2.111
  • O'Dell, J. W. (1993). The determination of chemical oxygen demand by semi-automated colorimetry, method 410.4. Cincinnati, OH: Environmental Monitoring Systems Laboratory, Office of Research and Development, US Environmental Protection Agency.
  • Palanichamy, S., & Subramanian, G. (2014). Hard foulers induced crevice corrosion of HSLA steel in the coastal waters of the Gulf of Mannar (Bay of Bengal), India. Journal of Marine Science and Application, 13(1), 117–126. doi:10.1007/s11804-014-1237-y
  • Palraj, S., Venkatachari, G., & Subramanian, G. (2002). Bio-fouling and corrosion characteristics of 60/40 brass in Mandapam waters. Anti-Corrosion Methods and Materials, 49(3), 194–198. doi:10.1108/00035590210426445
  • Permeh S, Echeverría Boan M, Tansel B, Lau K and Duncan M. 2019b. Exploration of the influence of microbe availability on MIC of steel marine fouling environments. In CORROSION 2019. Houston, TX: NACE International City. Paper No. 13461. 17pp.
  • Permeh S, Reid C, Echeverría Boan M, Lau K, Tansel B, Duncan M and Lasa I. 2017. Microbiological influenced corrosion (MIC) In Florida marine environment: A Case Study. In CORROSION 2017. Houston, TX: NACE International City. Paper No. 9536. 12pp.
  • Permeh, S., Echeverría Boan, M., & Lau, K. (2019a). Susceptibility of bridge steel and concrete components to microbiological influenced corrosion (MIC) and microbiological influenced deterioration (MID) in Florida. Final Report to Florida Department of Transportation, Contract No. BDV29-97726.
  • Permeh, S., Lau, K., & Duncan, M. (2019). “Characterization of biofilm formation and coating degradation by electrochemical impedance spectroscopy.”. Coatings, 9(8), 518. doi:10.3390/coatings9080518
  • Permeh, S., Li, B., Echeverría, M., Tansel, B., Lau, K., & Duncan, M. (2018). Microbially influenced steel corrosion with crevice conditions in natural water. In Proceedings of the Corrosion 2018, Phoenix, AZ, USA, 15–19 April 2018; NACE International: Houston, TX, USA. Paper No. 11529.
  • Pipe, A. (1981). North Sea fouling organisms and their potential effects on the corrosion of North Sea structures. Marine Corrosion on Offshore Structures, 1981, 13–22.
  • Postage, J. R. (1984). The sulphate reducing bacteria (2nd ed.). Cambridge: Cambridge University Press.
  • Sangeetha, R., Kumar, R., Venkatesan, R., Doble, M., Vedaprakash, L., & Lakshmi, K. (2010). Understanding the structure of the adhesive plaque of Amphibalanus reticulatus. Materials Science and Engineering: C, 30(1), 112–119.
  • Scott, P. (2004). Expert consensus on MIC: Failure analysis and control. Materials Performance, 43(4), 46–50.
  • Subramanian, G., & Palanichamy, S. (2013). Influence of fouling assemblage on the corrosion behaviour of mild steel in the coastal waters of the Gulf of Mannar, India. Journal of Marine Science and Application, 12(4), 500–509. doi:10.1007/s11804-013-1222-x
  • Telegdi, J., Szabó, T., Al‐Taher, F., Pfeifer, É., Kuzmann, E., & Vértes, A. (2010). Coatings against corrosion and microbial adhesion. Materials and Corrosion, 61(12), 1000–1007. doi:10.1002/maco.201005797
  • TM0194 (2014). Field monitoring of bacterial growth in oil and gas systems. Nace Standard.Houston, TX: NACE.
  • USEPA (US Environmental Protection Agency) (2003). Draft update of ambient water quality criteria for copper. Washington, D.C.
  • Wells, S., & Sytsma, M. (2009). A review of the use of coatings to mitigate biofouling in freshwater (p. 2018). Portland, OR: Portland State University.
  • Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75–104. doi:10.1016/j.porgcoat.2003.06.001
  • Zhang, H. J., & Dexter, S. C. (1995). Effect of biofilms on crevice corrosion of stainless steels in coastal seawater. Corrosion, 51(1), 56–66. doi:10.5006/1.3293578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.