Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 16, 2020 - Issue 11
448
Views
8
CrossRef citations to date
0
Altmetric
Articles

Prediction of fatigue failure of corrosion affected riveted connections in steel structures

, &
Pages 1524-1538 | Received 18 Feb 2019, Accepted 09 Oct 2019, Published online: 20 Jan 2020

References

  • Adasooriya, N., & Siriwardane, S. (2014). Remaining fatigue life estimation of corroded bridge members. Fatigue & Fracture of Engineering Materials & Structures, 37, 603–622. doi:10.1111/ffe.12144
  • Ali, K., Peng, D., Jones, R., Singh, R. R. K., Zhao, X. L., McMillan, A. J., & Berto, F. (2017). Crack growth in a naturally corroded bridge steel. Fatigue & Fracture of Engineering Materials & Structures, 40(7), 1117–1127. doi:10.1111/ffe.12568
  • ASTM International. (2015a). ASTM E466-15. Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. Retrieved from www.astm.org
  • ASTM International. (2015b). ASTM E797/E797M − 15. Standard practice for measuring thickness by manual ultrasonic pulse-echo contact method. Retrieved from www.astm.org
  • Australian Building Codes Board. (2019). National Construction Code Volume One. Canberra, ACT: Building Code of Australia. Retrieved from www.abcb.gov.au
  • Baker, K. A., & Kulak, G. L. (1985). Fatigue of riveted connections. Canadian Journal of Civil Engineering, 12(1), 184–191. doi:10.1139/l85-017
  • Bandara, C., Dissanayake, U., & Dissanayake, P. (2015). Novel method for developing sn curves for corrosion fatigue damage assessment of steel structures. Paper presented at the 6th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka.
  • British Standards Institution. (2014). BS 7608. Guide to fatigue design and assessment of steel products. London: British Standards Institution.
  • Brühwiler, E., Smith, I. F., & Hirt, M. A. (1990). Fatigue and fracture of riveted bridge members. Journal of Structural Engineering, 116(1), 198–214. doi:10.1061/(ASCE)0733-9445(1990)116:1(198)
  • Bursi, O. S., & Jaspart, J. P. (1997). Benchmarks for finite element modelling of bolted steel connections. Journal of Constructional Steel Research, 43(1-3), 17–42. doi:10.1016/S0143-974X(97)00031-X
  • Czarnecki, A. A., & Nowak, A. S. (2008). Time-variant reliability profiles for steel girder bridges. Structural Safety, 30(1), 49–64. doi:10.1016/j.strusafe.2006.05.002
  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods (Vol. 178). New York: Wiley.
  • Fisher, J. W., Yen, B. T., & Wang, D. (1990). Fatigue strength of riveted bridge members. Journal of Structural Engineering, 116(11), 2968–2981. doi:10.1061/(ASCE)0733-9445(1990)116:11(2968)
  • Fricke, W. (2003). Fatigue analysis of welded joints: State of development. Marine Structures, 16(3), 185–200. doi:10.1016/S0951-8339(02)00075-8
  • Gholizad, A., Golafshani, A. A., & Akrami, V. (2012). Structural reliability of offshore platforms considering fatigue damage and different failure scenarios. Ocean Engineering, 46, 1–8. doi:10.1016/j.oceaneng.2012.01.033
  • Giorgetti, V., Santos, E. A., Marcomini, J. B., & Sordi, V. L. (2019). Stress corrosion cracking and fatigue crack growth of an API 5L X70 welded joint in an ethanol environment. International Journal of Pressure Vessels and Piping, 169, 223–229. doi:10.1016/j.ijpvp.2019.01.006
  • Imam, B. M., & Righiniotis, T. D. (2010). Fatigue evaluation of riveted railway bridges through global and local analysis. Journal of Constructional Steel Research, 66(11), 1411–1421. doi:10.1016/j.jcsr.2010.04.015
  • Imam, B. M., Righiniotis, T. D., & Chryssanthopoulos, M. K. (2008). Probabilistic fatigue evaluation of riveted railway bridges. Journal of Bridge Engineering, 13(3), 237–244. doi:10.1061/(ASCE)1084-0702(2008)13:3(237)
  • Kulak, G. L., Fisher, J. W., & Struik, J. H. (2001). Guide to design criteria for bolted and riveted joints. Chicago, IL: American Institute of Steel Construction, Inc.
  • Li, C. Q., Firouzi, A., & Yang, W. (2016). Closed-form solution to first passage probability for nonstationary lognormal processes. Journal of Engineering Mechanics, 142(12), 04016103. doi:10.1061/(ASCE)EM.1943-7889.0001160
  • Li, C. Q., & Mahmoodian, M. (2013). Risk based service life prediction of underground cast iron pipes subjected to corrosion. Reliability Engineering & System Safety, 119, 102–108. doi:10.1016/j.ress.2013.05.013
  • Li, C. Q., & Melchers, R. E. (1993). Outcrossings from convex polyhedrons for nonstationary Gaussian processes. Journal of Engineering Mechanics, 119(11), 2354–2361. doi:10.1061/(ASCE)0733-9399(1993)119:11(2354)
  • Li, C. Q., & Melchers, R. E. (2005). Time-dependent reliability analysis of corrosion-induced concrete cracking. ACI Structural Journal, 102, 543.
  • Li, L., Li, C. Q., & Mahmoodian, M. (2019). Prediction of fatigue failure of steel beams subjected to simultaneous corrosion and cyclic loading. Structures, 19, 386–393. doi:10.1016/j.istruc.2019.02.003
  • Li, L., Mahmoodian, M., Li, C. Q., & Robert, D. (2018). Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel. Construction and Building Materials, 170, 78–90.
  • Mahmoodian, M., & Li, C. Q. (2011). Service life prediction of underground concrete pipes subjected to corrosion. Paper presented at the 4th International Conference on Concrete Repair, Dresden, Germany.
  • Mahmoodian, M., & Li, C. Q. (2016). Structural integrity of corrosion-affected cast iron water pipes using a reliability-based stochastic analysis method. Structure and Infrastructure Engineering, 12(10), 1356–1363. doi:10.1080/15732479.2015.1117114
  • Mahmoodian, M., & Li, C. Q. (2017). Failure assessment and safe life prediction of corroded oil and gas pipelines. Journal of Petroleum Science and Engineering, 151, 434–438. doi:10.1016/j.petrol.2016.12.029
  • Melchers, R. E. (1999). Structural reliability analysis and prediction. Chichester: Wiley.
  • Miner, M. (1945). Cumulative fatigue damage. Journal of Applied Mechanics, 12, A159–A164.
  • Nguyen, K. T., Garbatov, Y., & Soares, C. G. (2013). Spectral fatigue damage assessment of tanker deck structural detail subjected to time-dependent corrosion. International Journal of Fatigue, 48, 147–155. doi:10.1016/j.ijfatigue.2012.10.014
  • Ni, Y., Ye, X. W., & Ko, J. M. (2010). Monitoring-based fatigue reliability assessment of steel bridges: Analytical model and application. Journal of Structural Engineering, 136(12), 1563–1573. doi:10.1061/(ASCE)ST.1943-541X.0000250
  • Nussbaumer, A., Borges, L., & Davaine, L. (2012). Fatigue design of steel and composite structures: Eurocode 3: Design of steel structures, Part 1-9 Fatigue; Eurocode 4: Design of composite steel and concrete structures. Hoboken, NJ: John Wiley & Sons.
  • O'Connell, H. M., & Dexter, R. J. (2001). Response and analysis of steel trusses for fatigue truck loading. Journal of Bridge Engineering, 6(6), 628–638. doi:10.1061/(ASCE)1084-0702(2001)6:6(628)
  • Out, J. M. (1984). The fatigue strength of weathered and deteriorated riveted members (Doctoral dissertation). Lehigh University, Bethlehem, PA. Retrieved from https://preserve.lehigh.edu
  • Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). Boston, MA: McGraw-Hill.
  • Pipinato, A., Pellegrino, C., Bursi, O. S., & Modena, C. (2009). High-cycle fatigue behavior of riveted connections for railway metal bridges. Journal of Constructional Steel Research, 65(12), 2167–2175. doi:10.1016/j.jcsr.2009.06.019
  • Rabemanantsoa, H., & Hirt, M. A. (1984). Comportement à la fatigue de profilés laminés avec semelles de renfort rivetées. Rapport d'essais. (No. REP_WORK). Lausanne: Swiss Federal Institute of Technology Lausanne.
  • Reemsnyder, H. S. (1975). Fatigue life extension of riveted connections. Journal of the Structural Division, 101, 2591.
  • Revie, R. W. (2008). Corrosion and corrosion control. Hoboken, NJ: John Wiley & Sons.
  • Rodriguez, R. I., Jordon, J. B., Allison, P. G., Rushing, T. W., & Garcia, L. (2019). Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Materials Science and Engineering: A, 742, 255–268. doi:10.1016/j.msea.2018.11.020
  • Sharifi, Y., & Rahgozar, R. (2009). Fatigue notch factor in steel bridges due to corrosion. Archives of Civil and Mechanical Engineering, 9(4), 75–83. doi:10.1016/S1644-9665(12)60071-5
  • Siriwardane, S., Ohga, M., Dissanayake, R., & Taniwaki, K. (2008). Application of new damage indicator-based sequential law for remaining fatigue life estimation of railway bridges. Journal of Constructional Steel Research, 64(2), 228–237. doi:10.1016/j.jcsr.2007.06.002
  • Wu, Z., Zhang, S., & Jiang, S. F. (2012). Simulation of tensile bolts in finite element modeling of semi-rigid beam-to-column connections. International Journal of Steel Structures, 12(3), 339–350. doi:10.1007/s13296-012-3004-8
  • Zampieri, P., Curtarello, A., Maiorana, E., & Pellegrino, C. (2018). A review of the fatigue strength of shear bolted connections. International Journal of Steel Structures, 19(4), 1084–1098. doi:10.1007/s13296-018-0189-5
  • Zampieri, P., Curtarello, A., Pellegrino, C., & Maiorana, E. (2017). Fatigue strength of corroded bolted connection. Frattura ed Integrità Strutturale, 12(43), 90–96. doi:10.3221/IGF-ESIS.43.06
  • Zhang, R., & Mahadevan, S. (2001). Fatigue reliability analysis using nondestructive inspection. Journal of Structural Engineering, 127(8), 957–965. doi:10.1061/(ASCE)0733-9445(2001)127:8(957)
  • Zhao, Z. (1995). Primary and deformation-induced high and low cycle fatigue reliability of infrastructure with updating through non-destructive inspection (Unpublished Doctoral Dissertation). University of Arizona, Tucson, Arizona.
  • Zhao, Z., Haldar, A., & Breen, F. L. Jr, (1994). Fatigue-reliability evaluation of steel bridges. Journal of Structural Engineering, 120(5), 1608–1623. doi:10.1061/(ASCE)0733-9445(1994)120:5(1608)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.