Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 2
334
Views
4
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation on progressive collapse resistance of steel-concrete composite floor systems

, , &
Pages 202-216 | Received 25 Aug 2019, Accepted 27 Dec 2019, Published online: 02 Mar 2020

References

  • Alashker, Y., & El-Tawil, S. (2011). A design-oriented model for the collapse resistance of composite floors subjected to column loss. Journal of Constructional Steel Research, 67(1), 84–92. doi:10.1016/j.jcsr.2010.07.008
  • Alashker, Y., El-Tawil, S., & Sadek, F. (2010). Progressive collapse resistance of steel-concrete composite floors. Journal of Structural Engineering, 136(10), 1187–1196. doi:10.1061/(ASCE)ST.1943-541X.0000230
  • Bao, Y., Main, J. A., & Noh, S. Y. (2017). Evaluation of structural robustness against column loss: Methodology and application to RC frame buildings. Journal of Structural Engineering, 143(8), 04017066. doi:10.1061/(ASCE)ST.1943-541X.0001795
  • Belytschko, T., Lin, J. I., & Chen-Shyh, T. (1984). Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering, 42(2), 225–251. doi:10.1016/0045-7825(84)90026-4
  • Botte, W., Gouverneur, D., Caspeele, R., & Taerwe, L. (2015). Influence of design parameters on tensile membrane action in reinforced concrete slabs. Structural Engineering International, 25(1), 50–60. doi:10.2749/101686614X14043795570174
  • CEB-FIP. (2010). CEB-FIP model code 2010, design code. Telford: Author.
  • CECS 273-2010. (2010). Code for composite slabs design and construction. Beijing: Branch of the Association of Metallurgy of the People’s Republic of China.
  • Eurocode, C. E. N. (2004). Eurocode 4: Design of composite steel and concrete structures − Part 1–1: General rules and rules for buildings. London, UK: British Standards Institution.
  • Fu, F. (2010). 3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings - Parametric study. Engineering Structures, 32(12), 3974–3980. doi:10.1016/j.engstruct.2010.09.008
  • Fu, Q. N., Tan, K. H., Zhou, X. H., & Yang, B. (2017). Load-resisting mechanisms of 3D composite floor systems under internal column-removal scenario. Engineering Structures, 148, 357–372.
  • Fu, Q. N., Tan, K. H., Zhou, X. H., & Yang, B. (2018). Three-dimensional composite floor systems under column-removal scenarios. Journal of Structural Engineering, 144(10), 04018196. doi:10.1061/(ASCE)ST.1943-541X.0002197
  • Gerasimidis, S. (2014). Analytical assessment of steel frames progressive collapse vulnerability to corner column loss. Journal of Constructional Steel Research, 95, 1–9. doi:10.1016/j.jcsr.2013.11.012
  • Gerasimidis, S., Deodatis, G., Kontoroupi, T., & Ettouney, M. (2015). Loss-of-stability induced progressive collapse modes in 3D steel moment frames. Structure and Infrastructure Engineering, 11(3), 334–344. doi:10.1080/15732479.2014.885063
  • Gerasimidis, S., Deodatis, G., Yan, Y., & Ettouney, M. (2017). Global instability induced failure of tall steel moment frame buildings. Journal of Performance of Constructed Facilities, 31(2), 04016082. doi:10.1061/(ASCE)CF.1943-5509.0000940
  • Ghorbanzadeh, B., Bregoli, G., Vasdravellis, G., & Karavasilis, T. L. (2019). Pilot experimental and numerical studies on a novel retrofit scheme for steel joints against progressive collapse. Engineering Structures, 200, 109667. doi:10.1016/j.engstruct.2019.109667
  • Gouverneur, D., Caspeele, R., & Taerwe, L. (2013a). Experimental investigation of the load–displacement behaviour under catenary action in a restrained reinforced concrete slab strip. Engineering Structures, 49, 1007–1016. doi:10.1016/j.engstruct.2012.12.045
  • Gouverneur, D., Caspeele, R., & Taerwe, L. (2013b). Effect of reinforcement curtailment on deflections, strain and crack development in RC slabs under catenary action. Magazine of Concrete Research, 65(22), 1336–1347. doi:10.1680/macr.13.00141
  • Gouverneur, D., Caspeele, R., & Taerwe, L. (2015). Strain and crack development in continuous reinforced concrete slabs subjected to catenary action. Structural Engineering and Mechanics, 53(1), 173–188. doi:10.12989/sem.2015.53.1.173
  • Grassl, P., & Jirásek, M. (2006). Damage-plastic model for concrete failure. International Journal of Solids and Structures, 43(22-23), 7166–7196. doi:10.1016/j.ijsolstr.2006.06.032
  • Grassl, P., Xenos, D., Nyström, U., Rempling, R., & Gylltoft, K. (2013). CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures, 50(24), 3805–3816. doi:10.1016/j.ijsolstr.2013.07.008
  • Hadjioannou, M., Donahue, S., Williamson, E. B., & Engelhardt, M. D. (2018). Large-scale experimental tests of composite steel floor systems subjected to column loss scenarios. Journal of Structural Engineering, 144(2), 04017184. doi:10.1061/(ASCE)ST.1943-541X.0001929
  • Hadjioannou, M. (2015). Large-scale testing and numerical simulations of composite floor slabs under progressive collapse scenarios (Doctoral dissertation). University of Texas at Austin, Austin, TX.
  • Hallquist, J. O. (2016). LS-DYNA keyword user’s manual (Version R9.1). Livermore, CA: Livermore Software Technology Corporation.
  • Hayes, B. (1968). Allowing for membrane action in the plastic analysis of rectangular reinforced concrete slabs. Magazine of Concrete Research, 20(65), 205–212. doi:10.1680/macr.1968.20.65.205
  • Hughes, T. J., & Liu, W. K. (1981a). Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Computer Methods in Applied Mechanics and Engineering, 26(3), 331–362. doi:10.1016/0045-7825(81)90121-3
  • Hughes, T. J., & Liu, W. K. (1981b). Nonlinear finite element analysis of shells-part II. two-dimensional shells. Computer Methods in Applied Mechanics and Engineering, 27(2), 167–181. doi:10.1016/0045-7825(81)90148-1
  • JGJ 114-2014. (2014). Technical specification for concrete structures reinforced with welded steel fabric. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China.
  • Johnson, E. S., Meissner, J. E., & Fahnestock, L. A. (2016). Experimental behavior of a half-scale steel concrete composite floor system subjected to column removal scenarios. Journal of Structural Engineering, 142(2), 04015133. doi:10.1061/(ASCE)ST.1943-541X.0001398
  • Krieg, R. D., & Key, S. W. (1976). Implementation of a time independent plasticity theory into structural computer programs. Constitutive equations in viscoplasticity: Computational and Engineering Aspects. 20, 125–137.
  • Lew, H. S., Main, J. A., Robert, S. D., Sadek, F., & Chiarito, V. P. (2012). Performance of Steel Moment Connections under a Column Removal Scenario. I: Experiments. Journal of Structural Engineering, 139(1), 98–107. doi:10.1061/(ASCE)ST.1943-541X.0000618.
  • Mitchell, D., & Cook, W. D. (1984). Preventing progressive collapse of slab structures. Journal of Structural Engineering, 110(7), 1513–1532. doi:10.1061/(ASCE)0733-9445(1984)110:7(1513)
  • Park, R. (1964a). Tensile membrane behaviour of uniformly loaded rectangular reinforced concrete slabs with fully restrained edges. Magazine of Concrete Research, 16(46), 39–44. doi:10.1680/macr.1964.16.46.39
  • Park, R. (1964b). Ultimate strength of rectangular concrete slabs under short-term uniform loading with edges restrained against lateral movement. Proceedings of the Institution of Civil Engineers, 28(2), 125–150. doi:10.1680/iicep.1964.10109
  • Park, R. (1965). The lateral stiffness and strength required to ensure membrane action at the ultimate load of a reinforced concrete slab-and-beam floor. Magazine of Concrete Research, 17(50), 29–38. doi:10.1680/macr.1965.17.50.29
  • Qian, K., Li, B., & Ma, J. X. (2015). Load-carrying mechanism to resist progressive collapse of RC buildings. Journal of Structural Engineering, 141(2), 04014107. doi:10.1061/(ASCE)ST.1943-541X.0001046
  • Qin, X., Wang, W., Chen, Y., & Bao, Y. (2015). Experimental study of through diaphragm connection types under a column removal scenario. Journal of Constructional Steel Research, 112, 293–304. doi:10.1016/j.jcsr.2015.05.022
  • Sadek, F., El-Tawil, S., & Lew, H. S. (2008). Robustness of composite floor systems with shear connections: Modeling, simulation, and evaluation. Journal of Structural Engineering, 134(11), 1717–1725. doi:10.1061/(ASCE)0733-9445(2008)134:11(1717)
  • Sawczuk, A., & Winnicki, L. (1965). Plastic behavior of simply supported reinforced concrete plates at moderately large deflections. International Journal of Solids and Structures, 1(1), 97–111. doi:10.1016/0020-7683(65)90019-3
  • Tahmasebinia, F., Ranzi, G., & Zona, A. (2011). A probabilistic three-dimensional finite element study on simply-supported composite floor beams. Australian Journal of Structural Engineering, 12(3), 251–262. doi:10.7158/S11-107.2012.12.3
  • Wang, J., Wang, W., & Bao, Y. (2020). Full-scale test of a steel-concrete composite floor system with moment-resisting connections under a middle edge column removal scenario. Journal of Structural Engineering, doi: 10.1061/(ASCE)ST.1943-541X.0002630. (Accepted).
  • Wang, J., Wang, W., Bao, Y., & Lehman, D. (2019). Full-scale test of a steel moment-resisting frame with composite floor under a penultimate edge column removal scenario. Journal of Constructional Steel Research, 162, 105717. doi:10.1016/j.jcsr.2019.105717
  • Wang, J., Wang, W., & Qian, X. (2019). Progressive collapse simulation of the steel-concrete composite floor system considering ductile fracture of steel. Engineering Structures, 200, 109701. doi:10.1016/j.engstruct.2019.109701
  • Wei, J. P., Tian, L. M., Hao, J. P., Li, W., Zhang, C. B., & Li, T. J. (2019). Novel principle for improving performance of steel frame structures in column-loss scenario. Journal of Constructional Steel Research, 163, 105768. doi:10.1016/j.jcsr.2019.105768
  • Yi, W. J., Zhang, F. Z., & Kunnath, S. K. (2014). Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering, 140(9), 04014048. doi:10.1061/(ASCE)ST.1943-541X.0000963

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.