Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 7
1,793
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Incorporation of pre-existing longitudinal cracks in finite element analyses of corroded reinforced concrete beams failing in anchorage

ORCID Icon, ORCID Icon & ORCID Icon
Pages 960-976 | Received 09 Jan 2020, Accepted 10 Mar 2020, Published online: 08 Jul 2020

References

  • Arneth, A., Barbosa, H., Benton, T., Calvin, K., Calvo, E., Connors, S., … Zommers, Z. (2019). Climate change and land: Summary for policymakers. an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. doi:10.4337/9781784710644
  • Berdica, K. (2002). An introduction to road vulnerability: What has been done, is done and should be done. Transport Policy, 9, 117–127. doi:10.1016/S0967-070X(02)00011-2
  • Biondini, F., & Vergani, M. (2015). Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion. Structure and Infrastructure Engineering, 11, 519–532. doi:10.1080/15732479.2014.951863
  • Blomfors, M., Zandi, K., Lundgren, K., & Coronelli, D. (2018). Engineering bond model for corroded reinforcement. Engineering Structures, 156, 394–410. doi:10.1016/j.engstruct.2017.11.030
  • Bradley, D., & Hehenberger, P. (2016). Mechatronic futures: Challenges and solutions for mechatronic systems and their designers. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-32156-1_1
  • Cavaco, E. S., Neves, L. A. C., & Casas, J. R. (2018). On the robustness to corrosion in the life cycle assessment of an existing reinforced concrete bridge. Structure and Infrastructure Engineering, 14, 137–150. doi:10.1080/15732479.2017.1333128
  • Christidis, P., & Leduc, G. (2009). Longer and heavier vehicles for freight transport. JRC Scientific and Technical Reports, EUR 23933, 40. doi:10.2791/12276
  • Cornelissen, H. A. W., Hordijk, D. A., & Reinhardt, H. W. (1986). Experimental determination of crack softening characteristics of normalweight and lightweight. Heron, 32, 45–56.
  • Coronelli, D., & Gambarova, P. (2004). Structural assessment of corroded reinforced concrete beams: Modeling guidelines. Journal of Structural Engineering, 130(8), 1214–1224. doi:10.1061/(ASCE)0733-9445(2004)130:8(1214)
  • DIANA FEA BV. (2017). FE-software DIANA 10.2. Delft, The Netherlands.
  • Feenstra, P. H. (1993). Computational aspects of biaxial stress in plain and reinforced concrete. Delft University of Technology.
  • FIB. (2013). Model Code 2010. FIB model code for concrete structures 2010. Lausanne, Switzerland.
  • Gálvez, J. C., Červenka, J., Cendón, D. A., & Saouma, V. (2002). A discrete crack approach to normal/shear cracking of concrete. Cement and Concrete Research, 32, 1567–1585. doi:10.1016/S0008-8846(02)00825-6
  • Hanjari, Z., Kettil, P., & Lundgren, K. (2012). Analysis of mechanical behavior of corroded reinforced concrete structures. ACI Structural Journal, 108, 532–541.
  • Hendriks, M.A.N., de Boer, A., Belletti, B. (2017). “Guidelines for Nonlinear Finite Element Analysis of Concrete Structures”, Rijkswaterstaat Centre for Infrastructure, Report RTD:1016-1:2017.
  • Jansson, A., Lofgren, I., Lundgren, K., & Gylltoft, K. (2012). Bond of reinforcement in self-compacting steel-fibre-reinforced concrete. Magazine of Concrete Research, 64, 617–630. doi:10.1680/macr.11.00091
  • Jiradilok, P., Nagai, K., & Matsumoto, K. (2019). Meso-scale modeling of non-uniformly corroded reinforced concrete using 3D discrete analysis. Engineering Structures, 197, 109378. doi:10.1016/j.engstruct.2019.109378
  • Jiradilok, P., Wang, Y., Nagai, K., & Matsumoto, K. (2020). Development of discrete meso-scale bond model for corrosion damage at steel-concrete interface based on tests with/without concrete damage. Construction and Building Materials, 236, 117615. doi:10.1016/j.conbuildmat.2019.117615
  • Lundgren, K. (2005). Bond between ribbed bars and concrete. Magazine of Concrete Research, 57, 371–382. doi:10.1680/macr.2005.57.7.371
  • Lundgren, K., Kettil, P., Zandi Hanjari, K., Schlune, H., & Roman, A. S. S. (2012). Analytical model for the bond-slip behaviour of corroded ribbed reinforcement. Structure and Infrastructure Engineering, 8, 157–169. doi:10.1080/15732470903446993
  • Malm, R., & Holmgren, J. (2008). Cracking in deep beams owing to shear loading. Magazine of Concrete Research, 60, 381–388. doi:10.1680/macr.2008.60.5.381
  • Muttoni, A., & Fernández Ruiz, M. (2012). The levels-of-approximation approach in MC 2010: Application to punching shear provisions. Structural Concrete, 13(1), 32–41. doi:10.1002/suco.201100032
  • Nasr, A., Björnsson, I., Honfi, D., Larsson Ivanov, O., Johansson, J., & Kjellström, E. (2019). A review of the potential impacts of climate change on the safety and performance of bridges. Sustainable and Resilient Infrastructure, 1–21. doi:10.1080/23789689.2019.1593003
  • Ng, P. L., Ma, F. J., & Kwan, A. K. H. (2019). Crack analysis of reinforced concrete members with and without crack queuing algorithm. Structural Engineering and Mechanics, 70(1), 43–54.
  • Rots, J. G. (1988). Computational modelling of concrete fracture. Delft University.
  • Rots, J. G., & Blaauwendraad, J. (1989). Crack models for concrete: Discrete or smeared? Fixed Multi-Directional or Rotating? Heron, 34(1), 3–59. doi:10.1096/fj.02
  • Saether, I. (2011). Bond deterioration of corroded steel bars in concrete. Structure and Infrastructure Engineering, 7, 415–429. doi:10.1080/15732470802674836
  • Shu, J. (2018). Shear assessment of a reinforced concrete bridge deck slab according to level-of-approximation approach. Structural Concrete, 19, 1838–1850. doi:10.1002/suco.201700283
  • Tahershamsi, M., Fernandez, I., Zandi, K., & Lundgren, K. (2017). Four levels to assess anchorage capacity of corroded reinforcement in concrete. Engineering Structures, 147, 434–447. doi:10.1016/j.engstruct.2017.06.024
  • Vecchio, F., & Collins, M. (1993). Compression response of cracked reinforced concrete. Journal of Structural Engineering, 119, 3590–3610. doi:10.1061/(ASCE)0733-9445(1993)119:12(3590)
  • Wittmann, F. H., Rokugo, K., Brühwiler, E., Mihashi, H., & Simonin, P. (1988). Fracture energy and strain softening of concrete as determined by means of compact tension specimens. Materials and Structures, 21(1), 21–32. doi:10.1007/BF02472525
  • Zandi, K. (2015). Corrosion-induced cover spalling and anchorage capacity. Structure and Infrastructure Engineering, 11, 1518–1547. doi:10.1080/15732479.2014.979836
  • Zandi, K., Boubitsas, D., Fahimi, S., Johansson, M., Spetz, J., & Flansbjer, M. (2019). Autonomous automated non-intrusive condition assessment of concrete structures. Report ACE 2019:5. Gothenburg.
  • Zandi, K., Ransom, E. H., Topac, T., Chen, R., Beniwal, S., Blomfors, M., … Chang, F.-K. (2019). A framework for digital twin of civil infrastructure - Challenges and opportunities. The 12th International Workshop on Structural Health Monitoring, Stanford, California, USA, September 10-12, 2019 (p. 7). Lancaster, PA: DEStech Publications, Inc.