Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 9
173
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Stochastic dynamic transient gusty wind effect on the sliding and overturning of quayside container cranes

ORCID Icon, &
Pages 1271-1283 | Received 18 Jun 2019, Accepted 21 Apr 2020, Published online: 27 Aug 2020

References

  • ASCE/SEI 49-12. (2012). Wind tunnel testing for buildings and other structures. Reston, VA: American Society of Civil Engineers.
  • Au, S. K., Zhang, F. L., & To, P. (2012). Field observations on modal properties of two tall buildings under strong wind. Journal of Wind Engineering and Industrial Aerodynamics, 101, 12–23. doi:10.1016/j.jweia.2011.12.002
  • Blevins, R. D. (2003). Applied fluid dynamics handbook. Malabar, FL: Krieger Publishing Company.
  • Butler, K., Cao, S., Kareem, A., Tamura, Y., & Ozono, S. (2010). Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field. Journal of Wind Engineering and Industrial Aerodynamics, 98(6–7), 299–316. doi:10.1016/j.jweia.2009.11.003
  • Chinese Standards. (2012). Load code for the design of building structures. GB 50009-2012. Beijing, China: China Architecture & Building Press. [In Chinese]
  • Chinese Standards. (2014). Standards for wind tunnel test of buildings and structures. JGJ/T 388-2014. Beijing, China: China Architecture & Building Press. [In Chinese]
  • Cui, W., & Caracoglia, L. (2016). Physics-based method for the removal of spurious resonant frequencies in high-frequency force balance tests. Journal of Structural Engineering, 142 (2), 04015129. doi:10.1061/(ASCE)ST.1943-541X.0001414
  • Ding, J., & Chen, X. (2014). Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples. Engineering Structures, 80, 75–88. doi:10.1016/j.engstruct.2014.08.041
  • Gu, M., Huang, P., & Wang, Y. J. (2008). Numerical simulation of mean wind loads on a container crane and its comparison with experimental results. Journal of Tongji University (Natural Science), 36(8), 1024–1027.
  • Han, D. S., & Han, G. J. (2011). Force coefficient at each support point of a container crane according to the wind direction. International Journal of Precision Engineering and Manufacturing, 12(6), 1059–1064. doi:10.1007/s12541-011-0141-5
  • Hong, H. P., & Ye, W. (2014). Estimating extreme wind speed based on regional frequency analysis. Structural Safety, 47, 67–77. doi:10.1016/j.strusafe.2013.12.001
  • Huang, P., Wang, Y. J., & Gu, M. (2007). Experimental research on mean wind loads of a quayside container crane. Journal of Tongji University (Natural Science), 35(10), 1384–1389.
  • Kang, J. H., & Lee, S. J. (2008). Experimental study of wind load on a container crane located in a uniform flow and atmospheric boundary layers. Engineering Structures, 30(7), 1913–1921. doi:10.1016/j.engstruct.2007.12.013
  • Lee, S. J., & Kang, J. H. (2008). Wind load on a container crane located in atmospheric boundary layers. Journal of Wind Engineering and Industrial Aerodynamics, 96(2), 193–208. doi:10.1016/j.jweia.2007.04.003
  • McCarthy, P., & Vazifdar, F. (2004). Securing cranes for storm wind: Uncertainties and recommendations. In ASCE Ports 2004 Conference, Houston, TX. doi:10.1061/40727(2004)105
  • McCarthy, P., Jordan, M., Lee, K., & Werner, S. (2007). Increasing hurricane winds dockside crane retrofit recommendations. In ASCE Ports 2007 Conference, San Diego, CA.
  • McCarthy, P., Soderberg, E., & Dix, A. (2009). Wind damage to dockside cranes: Recent failures and recommendations. In TCLEE 2009 Conference, Oakland, CA. doi:10.1061/41050(357)50
  • McNeill, S. I. (2012). An analytic formulation for blind modal identification. Journal of Vibration and Control, 18(14), 2111–2121. doi:10.1177/1077546311429146
  • Nagarajaiah, S., & Yang, Y. (2015). Blind modal identification of output only non-proportionally -damped structures by time-frequency complex independent component analysis. Smart Structures and Systems, 15(1), 81–97. doi:10.12989/sss.2015.15.1.081
  • Qingdao Port (2018). Qingdao Port resumed normal production after a wind gust accident. http://www.chineseport.cn/bencandy.php?fid=49&id=274151.
  • Shinozuka, M., & Deodatis, G. (1991). Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews, 44(4), 191–203. doi:10.1115/1.3119501
  • Shinozuka, M., & Deodatis, G. (1996). Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Applied Mechanics Reviews, 49(1), 29–53. doi:10.1115/1.3101883
  • Soderberg, E., Hsieh, J., & Dix, A. (2009). Seismic guidelines for container cranes. In TCLEE 2009 Conference, Oakland, CA. doi:10.1061/41050(357)87
  • Sourav, G., & Samit, R. C. (2014). Vulnerability assessment of container cranes under stochastic wind loading. Structure and Infrastructure Engineering, 10(12), 1511–1530.
  • Spanos, P. D., Sun, Y., & Su, N. (2017). Advantages of filter approaches for the determination of wind-induced response of large-span roof structures. Journal of Engineering Mechanics, 143(9), 04017066. doi:10.1061/(ASCE)EM.1943-7889.0001261
  • Su, N., Cao, Z., & Wu, Y. (2018). Fast frequency-domain algorithm for estimating the dynamic wind-induced response of large-span roofs based on Cauchy’s residue theorem. International Journal of Structural Stability and Dynamics, 18(3), 1850037. doi:10.1142/S0219455418500372
  • Su, N., Peng, S., Hong, N., Wu, X., & Chen, Y. (2020). Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes. Wind and Structures, 30(4), 405–421.
  • Takahashi, K., Abe, M., & Fujino, T. (2016). Runaway characteristics of gantry cranes for container handling by wind gust. Mechanical Engineering Journal, 3(2), 15–00679–16. doi:10.1299/mej.15-00679
  • Takeuchi, T., & Maeda, J. (2013). Unsteady wind force on an elliptic cylinder subjected to a short-rise-time gust from steady flow. Journal of Wind Engineering and Industrial Aerodynamics, 122, 138–145. doi:10.1016/j.jweia.2013.06.008
  • Tomokiyo, E., Maeda, J., & Takeuchi, T. (2011). Statistic investigation of wind gust affecting overshoot of wind force on structures. Journal of Architecture and Urban Design, Kyushu University, 20, 41–46. (in Japanese).
  • Tomokiyo, E., Takeuchi, T., & Maeda, J. (2010). Nature of gusts focused on rise time of wind speed: Consideration of gust impact scale. In Proceedings of Kyushu Chapter Architectural Research Meeting of Architectural Institute of Japan (Vol. 49, pp. 165–168). (in Japanese)
  • Zhang, L. L., Xie, Z. N., & Yu, X. F. (2018). Method for decoupling and correction of dynamical signals in high-frequency force balance tests. Journal of Structural Engineering, 144(12), 04018216. doi:10.1061/(ASCE)ST.1943-541X.0002205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.