263
Views
0
CrossRef citations to date
0
Altmetric
Articles

A practical guide on the quantification of value of information gained by structural health monitoring and application to historic masonry structures

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 441-455 | Received 27 Apr 2020, Accepted 16 Sep 2020, Published online: 27 Dec 2020

References

  • Berger, J. O. (1985). Preposterior and sequential analysis. In Statistical decision theory and Bayesian analysis. New York, NY: Springer Series in Statistics. Springer.
  • Bismut, E., Schneider, R., Sousa, H., & Straub, D. (2018). Framework and categorization for value of information analysis (fact sheet). Retrieved from COST TU1402 WG3: https://www.cost-tu1402.eu/-/media/Sites/cost-tu1402/Documents/8Workshop/COST_TU1402_Fact-sheet_VoI_flow_Chart_179529.ashx?la=da&hash=9C4245073AA7E65B8D73A37147B004ADA75343D6.
  • Boffill, Y., Blanco, H., Lombillo, I., & Villegas, L. (2019). Assessment of historic brickwork under compression and comparison with available equations. Construction and Building Materials, 207, 258–272. doi:https://doi.org/10.1016/j.conbuildmat.2019.02.083
  • Breysse, D. (2012). Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Construction and Building Materials, 33, 139–163. doi:https://doi.org/10.1016/j.conbuildmat.2011.12.103
  • CEN/TC250/SC10/WG1 (2018). Masonry stochastic parameters – Strength (working document N0050, Wolfram Jäger, TU Dresden). Dresden: Germany.
  • Cost Action TU1402 (2014). Quantifying the value of structural health monitoring (2014–2019). Retrieved from https://www.cost-tu1402.eu/.
  • ČSN 73 0038. (2019). Navrhování konstrukcí – Doplňující ustanovení pro hodnocení existujících konstrukcí (in Czech; Supplementary Guidance for Assessment of Existing Structures to nationally implemented ISO 13822). Praha, Česká republika.
  • Dan, M., Penelis, G., & Bourlotos, G. (2013). Retrofit of stone masonry buildings in Greece. II. Determination of costs. Bulletin of the Polytechnic Institute of Jassy, Constructions. Architecture Section, LIX, (3), 193–209.
  • Del Grosso, A. E. (2013). Structural Health Monitoring: research and practice. In: Structural Health Monitoring: research and practice. Paper presented at the 2nd Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures – SMAR 2013.
  • Diamantidis, D., Sykora, M., & Sousa, H. (2019). Quantifying the value of structural health information (SHI) for decision support – Guide for practicing engineers (COST Action TU1402). Retrieved from https://www.cost-tu1402.eu/action/deliverables/guidelines.
  • Eberhardt, S., & Pospíšil, M. (2020). E-P Heritage value assessment method. Proposed methodology for assessing heritage value of load-bearing structures (under review). International Journal of Architectural Heritage. p. 45.
  • Ellingwood, B. R., Galambos, T. V., MacGregor, J. G., & Cornell, C. A. (1980). Development of a probability based load criterion for American national standard A58: building code requirements for minimum design loads in buildings and other structures. Washington, U.S.A.
  • Ente Nazionale Italiano di Unificazione. (2016). UNI/TR 11634:2016 Linee guida per il monitoraggio strutturale.
  • European Committee for Standardization (2002). EN 1990 - Eurocode: Basis of structural design. Brussels: CEN.
  • European Committee for Standardization (2011). CEN - EN 15331: Criteria for design, management and control of maintenance services for buildings. Brussels: CEN.
  • European Committee for Standardization (2012). Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced masonry structures (+ amendment A1), Eurocode 6: EN 1996-1-1. Brussels: CEN.
  • Faber, M. H. (2012). Statistics and probability theory - In pursuit of engineering decision support. Dordrecht, Heidelberg, London, New York: Springer Science + Business Media.
  • Howard, R. A. (1966). Information value theory. IEEE Transactions on Systems Science and Cybernetics, 2(1), 22–26. doi:https://doi.org/10.1109/TSSC.1966.300074
  • International Organization for Standardization (2003). ISO 14963:2003: Mechanical vibration and shock – Guidelines for dynamic tests and investigations on bridges and viaducts.
  • International Organization for Standardization (2004). ISO 16587:2004: Mechanical vibration and shock – Performance parameters for condition monitoring of structures.
  • International Organization for Standardization (2010). ISO 13822:2010 - Bases for design of structures - Assessment of existing structures. Geneve, Switzerland: ISO TC98/SC2.
  • International Organization for Standardization (2013). ISO 18265:2013 - Metallic Materials - Conversion of hardness values. Geneve, Switzerland: ISO.
  • International Organization for Standardization (2015). ISO 2394:2015 - General principles on reliability for structures. Geneve, Switzerland: ISO.
  • Joint Committee on Structural Safety (2008). Risk Assessment in Engineering – Principles, System Representation and Risk Criteria. Zurich: JCSS.
  • Joint Committee on Structural Safety (2020). JCSS Probabilistic Model Code (periodically updated, online publication). Retrieved from www.jcss-lc.org.
  • Lee, J. Y., & Ellingwood, B. R. (2017). A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change. Reliability Engineering & System Safety, 159, 100–107. https://doi.org/10.1016/j.ress.2016.10.022.
  • Mufti, A. (2001). Guidelines for structural health monitoring. (Design Manual No. 2). Winnipeg, Manitoba, Canada: ISIS Canada (Intelligent Sensing for Innovative Structures).
  • Nadolski, V., Rózsás, Á., & Sýkora, M. (2019). Calibrating partial factors – Methodology, input data and case study of steel structures. Periodica Polytechnica Civil Engineering, 63(1), 222–242. https://doi.org/10.3311/PPci.12822.
  • Österreichische Forschungsgesellschaft Straße - Schiene - Verkehr. (2012). RVS 13.03.01 – Monitoring von Brücken und anderen Ingenieurbauwerken.
  • Sousa, H., Wenzel, H., & Thöns, S. (2019a). An information value guide for infrastructure design and operation executives – Fundamental idea & concept. Paper presented at the IABSE Symposium 2019 Guimaraes: Towards a Resilient Built Environment - Risk and Asset Management, Guimarães, Portugal.
  • Sousa, H., Wenzel, H., & Thöns, S. (2019b). Quantifying the value of structural health information (SHI) for decision support - Guide for operators (COST Action TU1402). Retrieved from https://www.cost-tu1402.eu/action/deliverables/guidelines.
  • Sykora, M., Cejka, T., Holicky, M., & Witzany, J. (2013). Probabilistic model for compressive strength of historic masonry. Paper presented at the Proceedings of ESREL 2013, Amsterdam, The Netherlands.
  • Sykora, M., Diamantidis, D., Holicky, M., Markova, J., & Rozsas, A. (2018). Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Construction and Building Materials, 193, 196–210. https://doi.org/10.1016/j.conbuildmat.2018.10.180.
  • Sykora, M., Diamantidis, D., Markova, J., & Masciotta, M. (2019). Optimising in-situ testing for historic masonry structures: a case study. Paper presented at the Proceedings of RILEM Spring Convention and Sustainable Materials, Systems and Structures Conference, Rovinj, Croatia.
  • Sykora, M., Holicky, M., Markova, J., & Diamantidis, D. (2017). Assessment of compressive strength of historic masonry using in-situ measurements. Paper presented at the Proceedings of 15th International Probabilistic Workshop, Dresden, Germany.
  • Thöns, S. (2019). Quantifying the value of structural health information (SHI) for decision support - Guide for scientists (COST Action 1402). Retrieved from https://www.cost-tu1402.eu/action/deliverables/guidelines.
  • Uddin, W., Hudson, W., & Haas, R. (2013). Public infrastructure asset management (2nd ed.). New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto: McGraw-Hill Education.
  • Wenzel, H. (2013). Activities on standardization of SHM methodologies in Europe. International Workshop on Structural Health Monitoring (IWSHM), Stanford University, CA, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.