Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 6
296
Views
2
CrossRef citations to date
0
Altmetric
Article

Marginal Hilbert spectrum and instantaneous phase difference as total damage indicators in bridges under operational traffic loads

ORCID Icon, & ORCID Icon
Pages 824-844 | Received 03 Apr 2021, Accepted 13 Sep 2021, Published online: 01 Oct 2021

References

  • Chang, K. C., & Kim, C. W. (2016). Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Engineering Structures, 122, 156–173. doi:10.1016/j.engstruct.2016.04.057
  • Chen, B., Zhao, S. L., & Li, P. Y. (2014). Application of Hilbert-Huang transform in structural health monitoring: A state-of-the-art review. Mathematical Problems in Engineering, 2014, 1–22. doi:10.1155/2014/317954
  • Chopra, A. K. (2017). Dynamics of structures. Theory and applications to earthquake engineering (5th ed.). London: Pearson.
  • Chowdhury, I., & Dasgupta, S. P. (2003). Computation of Rayleigh damping coefficients for large systems. The Electronic Journal of Geotechnical Engineering, 8, 1–11.
  • Clough, R. W., & Penzien, J. (1975). Dynamics of structures. New York: McGraw-Hill.
  • Colominas, M. A., Schlotthauer, G., & Torres, M. E. (2014). Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19–29. doi:10.1016/j.bspc.2014.06.009
  • Delgadillo, R. M., & Casas, J. R. (2020). Non-modal vibration-based methods for bridge damage identification. Structure and Infrastructure Engineering, 16(4), 676–697. doi:10.1080/15732479.2019.1650080
  • Delgadillo, R. M., & Casas, J. R. (2019). SHM of bridges by improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and clustering. In proceedings Enabling Intelligent Life-cycle Health Management for Industry Internet of Things (IIOT) 2019.
  • Delgadillo, R. M., & Casas, J. R. (2021). Damage detection in a real truss bridge using Hilbert-Huang Transform of transient vibrations. 10th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), 11–15 April 2021, Sapporo Convention Center, Japan (pp.1–8).
  • Diez, A., Khoa, N. L. D., Alamdari, M. M., Wang, Y., Chen, F., & Runcie, P. (2016). A clustering approach for structural health monitoring on bridges. Journal of Civil Structural Health Monitoring, 6(3), 429–445. doi:10.1007/s13349-016-0160-0
  • Entezami, A., Sarmadi, H., Behkamal, B., & Mariani, S. (2020). Big data analytics and structural health monitoring: A statistical pattern recognition-based approach. Sensors, 20(8), 2328. doi:10.3390/s20082328
  • Huang, N. E., Long, S. R., & Shen, Z. (1996). The mechanism for frequency downshift in nonlinear wave evolution. Advances in Applied Mechanics, 32, 59–117C.
  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. doi:10.1098/rspa.1998.0193
  • Kim, C. W., Chang, K. C., Kitauchi, S., McGetrick, P. J., Hashimoto, K., & Sugiura, K. (2014). Changes in modal parameters of a steel truss bridge due to artificial damage. In Proceedings of the 11th International Conference on Structural Safety and Reliability, (ICOSSAR) (pp. 3725–3732).
  • Kunwar, A., Jha, R., Whelan, M., & Janoyan, K. (2013). Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations. Structural Control and Health Monitoring, 20(1), 1–15. doi:10.1002/stc.466
  • Kunwar, A. (2017). System identification free damage localization (Doctoral dissertation). Northeastern University, Boston, MA.
  • Li, D., Cao, M., Deng, T., & Zhang, S. (2019). Wavelet packet singular entropy-based method for damage identification in curved continuous girder bridges under seismic excitations. Sensors, 19(19), 4272. doi:10.3390/s19194272
  • Moughty, J. J., & Casas, J. R. (2017). A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions. Applied Sciences, 7(5), 510. doi:10.3390/app7050510
  • Moughty, J. J., & Casas, J. R. (2018). Damage identification of bridge structures using the Hilbert-Huang transform. In Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision: Proceedings of the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018) (pp. 28–31).
  • Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85(3), 67–94. doi:10.1061/JMCEA3.0000098
  • Oñate, E. (2013). Structural analysis with the finite element method. Linear statics: Volume 2: Beams, plates and shells. Dordrecht: Springer Science & Business Media.
  • Pines, D. J., & Salvino, L. W. (2002, July). Health monitoring of one-dimensional structures using empirical mode decomposition and the Hilbert-Huang transform. In L. Porter Davis (Ed.), Smart Structures and materials 2002: Smart structures and integrated systems (Vol. 4701, pp. 127–143). Bellingham, WA: International Society for Optics and Photonics.
  • Rao, S. S. (2017). The finite element method in engineering. Oxford: Butterworth-Heinemann.
  • Reddy, D. M., & Krishna, P. (2015). Innovative method of empirical mode decomposition as spatial tool for structural damage identification. Structural Control and Health Monitoring, 22(2), 365–373.
  • Roveri, N., & Carcaterra, A. (2012). Damage detection in structures under traveling loads by Hilbert–Huang transform. Mechanical Systems and Signal Processing, 28, 128–144. doi:10.1016/j.ymssp.2011.06.018
  • Roy, T. B., Banerji, S., Panigrahi, S. K., Chourasia, A., Tirca, L., & Bagchi, A. (2019). A novel method for vibration-based damage detection in structures using marginal Hilbert spectrum. In A. Rama Mohan Rao, & K. Ramanjaneyulu (Eds.), Recent Advances in Structural Engineering (Vol. 1, pp. 1161–1172). Singapore: Springer.
  • Salvino, L. W., Pines, D. J., Todd, M., & Nichols, J. M. (2014). EMD and instantaneous phase detection of structural damage. In N. E. Huang, & S. S. P. Shen (Eds.), Hilbert–Huang Transform and Its Applications (pp. 301–336). Singapore: World Scientific Publishing.
  • Salvino, L. W., Pines, D. J., & Fortner, N. A. (2003, September). Extracting instantaneous phase features for structural health monitoring. In Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford University (pp. 666–674).
  • Shi, C. X., Luo, Q. F., & Shi, W. X. (2005). Hilbert-Huang transform based approach for structural damage detection. Journal of Tongji University, 33(1), 16–20.
  • Spiridonakos, M. D., Chatzi, E. N., & Sudret, B. (2016). Polynomial chaos expansion models for the monitoring of structures under operational variability. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(3), B4016003.
  • Tatsis, K., & Chatzi, E. (2019). A numerical benchmark for system identification under operational and environmental variability. In 8th International Operational Modal Analysis Conference (IOMAC 2019).
  • Wining, M., & Klein, M. (1996). March). Modal selection by means of effective masses and effective modal forces an application example. In Proceedings of Conference on Spacecraft Structures, Materials & Mechanical Testing, The Netherlands (pp. 751–759).
  • Wu, S. P., Qin, G. J., Zou, J. H., & Sun, H. (2009). Structure health monitoring based on HHT of vibration response from unknown excitation. In Proceedings of the 8th International Symposium on Test and Measurement (Vol. 1, p. 6).
  • Yang, Y. B., Li, Y. C., & Chang, K. C. (2014). Constructing the mode shapes of a bridge from a passing vehicle: A theoretical study. Smart Structures and Systems, 13(5), 797–819. doi:10.12989/sss.2014.13.5.797

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.