Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 11
357
Views
0
CrossRef citations to date
0
Altmetric
Article

Time-dependent reliability assessment of steel pipelines subjected to localized corrosion

ORCID Icon, &
Pages 1505-1515 | Received 18 Jul 2021, Accepted 13 Nov 2021, Published online: 02 Feb 2022

References

  • Abyani, M., & Bahaari, M. R. (2021). Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines. Structure and Infrastructure Engineering, 17(10), 1404–1417.
  • Ahammed, M., & Melchers, R. (1996). Reliability estimation of pressurised pipelines subject to localised corrosion defects. International Journal of Pressure Vessels and Piping, 69(3), 267–272. doi:10.1016/0308-0161(96)00009-9
  • Al-Amin, M., & Zhou, W. (2014). Evaluating the system reliability of corroding pipelines based on inspection data. Structure and Infrastructure Engineering, 10(9), 1161–1175. doi:10.1080/15732479.2013.793725
  • Alizadeh, R., Allen, J. K., & Mistree, F. (2020). Managing computational complexity using surrogate models: A critical review. Research in Engineering Design, 31(3), 275–298. doi:10.1007/s00163-020-00336-7
  • Amaya-Gómez, R., Sánchez-Silva, M., Bastidas-Arteaga, E., Schoefs, F., & Munoz, F. (2019). Reliability assessments of corroded pipelines based on internal pressure – A review. Engineering Failure Analysis, 98, 190–214. doi:10.1016/j.engfailanal.2019.01.064
  • American Society of Mechanical Engineers. (2012). Manual for determining the remaining strength of corroded pipelines. New York, NY: American Society of Mechanical Engineers.
  • Caleyo, F., Velázquez, J., Valor, A., & Hallen, J. (2009). Probability distribution of pitting corrosion depth and rate in underground pipelines: A monte carlo study. Corrosion Science, 51(9), 1925–1934. doi:10.1016/j.corsci.2009.05.019
  • De Leon, D., & Macías, O. F. (2005). Effect of spatial correlation on the failure probability of pipelines under corrosion. International Journal of Pressure Vessels and Piping, 82(2), 123–128. doi:10.1016/j.ijpvp.2004.07.018
  • Der Kiureghian, A., & Liu, P.-L. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1), 85–104. doi:10.1061/(ASCE)0733-9399(1986)112:1(85)
  • Frankel, G., & Sridhar, N. (2008). Understanding localized corrosion. Materials Today, 11(10), 38–44. doi:10.1016/S1369-7021(08)70206-2
  • Gong, C., & Zhou, W. (2017). First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes. Structure and Infrastructure Engineering, 13(11), 1451–1461. doi:10.1080/15732479.2017.1285330
  • Gong, C., & Zhou, W. (2018). Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes. Reliability Engineering & System Safety, 169, 199–208. doi:10.1016/j.ress.2017.08.023
  • Haswell, R. J. V., & McConnell, R. A. (2015). UKOPA pipeline product loss incidents and faults report. (1962–2014 (Tech. Rep. No. UKOPA/15/003). Ambergate, UK: United Kingdom Onshore Pipeline Operators’ Association.
  • Hong, H. P. (1999). Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects. Structural Safety, 21(3), 203–222. doi:10.1016/S0167-4730(99)00016-8
  • Jiao, G., Sotberg, T., & Igland, R. (1995). SUPERB 2M statistical data-basic uncertainty measures for reliability analysis of offshore pipelines. (Tech. Rep. No. STF70 F95212). Trondheim, Norway: Norwegian Marine Technology Research Institute.
  • Katano, Y., Miyata, K., Shimizu, H., & Isogai, T. (2003). Predictive model for pit growth on underground pipes. CORROSION, 59(2), 155–161. doi:10.5006/1.3277545
  • Kutz, M. (2018). Handbook of environmental degradation of materials. Oxford, UK: William Andrew.
  • Mahmoodian, M., & Li, C. Q. (2017). Failure assessment and safe life prediction of corroded oil and gas pipelines. Journal of Petroleum Science and Engineering, 151, 434–438. doi:10.1016/j.petrol.2016.12.029
  • Mazumder, R. K., Salman, A. M., & Li, Y. (2021). Failure risk analysis of pipelines using data-driven machine learning algorithms. Structural Safety, 89, 102047. doi:10.1016/j.strusafe.2020.102047
  • Melchers, R. (2004). Pitting corrosion of mild steel in marine immersion environment part 1: Maximum pit depth. CORROSION, 60(9), 824–836. doi:10.5006/1.3287863
  • Melchers, R. E. (2015). Progression of pitting corrosion and structural reliability of welded steel pipelines. In R. Winston Revie (Ed.), Oil and gas pipelines: Integrity and safety handbook (pp. 327–342). Hoboken, NJ: John Wiley & Sons.
  • Miran, S. A., Huang, Q., & Castaneda, H. (2016). Time-dependent reliability analysis of corroded buried pipelines considering external defects. Journal of Infrastructure Systems, 22(3), 04016019. doi:10.1061/(ASCE)IS.1943-555X.0000307
  • Mokhtari, M., & Melchers, R. E. (2018). A new approach to assess the remaining strength of corroded steel pipes. Engineering Failure Analysis, 93, 144–156. doi:10.1016/j.engfailanal.2018.07.011
  • Mokhtari, M., & Melchers, R. E. (2020). Reliability of the conventional approach for stress/fatigue analysis of pitting corroded pipelines–development of a safer approach. Structural Safety, 85, 101943. doi:10.1016/j.strusafe.2020.101943
  • Najafi, M. (2005). Trenchless technology: Pipeline and utility design, construction, and renewal. New York, NY: McGraw-Hill Education.
  • Ross, S. M. (2014). Introduction to probability models. Oxford, UK: Academic Press.
  • Shibata, T. (1996). Statistical and stochastic approaches to localized corrosion. CORROSION, 52(11), 813–830. doi:10.5006/1.3292074
  • Sinha, S. K., & Pandey, M. D. (2002). Probabilistic neural network for reliability assessment of oil and gas pipelines. Computer-Aided Civil and Infrastructure Engineering, 17(5), 320–329. doi:10.1111/1467-8667.00279
  • Tee, K. F., Khan, L. R., & Li, H. (2014). Application of subset simulation in reliability estimation of underground pipelines. Reliability Engineering & System Safety, 130, 125–131. doi:10.1016/j.ress.2014.05.006
  • Tee, K. F., & Pesinis, K. (2017). Reliability prediction for corroding natural gas pipelines. Tunnelling and Underground Space Technology, 65, 91–105. doi:10.1016/j.tust.2017.02.009
  • Teixeira, A., Soares, C. G., Netto, T., & Estefen, S. (2008). Reliability of pipelines with corrosion defects. International Journal of Pressure Vessels and Piping, 85(4), 228–237. doi:10.1016/j.ijpvp.2007.09.002
  • Velázquez, J., Caleyo, F., Valor, A., & Hallen, J. (2009). Predictive model for pitting corrosion in buried oil and gas pipelines. CORROSION, 65(5), 332–342. doi:10.5006/1.3319138
  • Wang, H., Yajima, A., & Castaneda, H. (2019). A stochastic defect growth model for reliability assessment of corroded underground pipelines. Process Safety and Environmental Protection, 123, 179–189. doi:10.1016/j.psep.2019.01.005
  • Zelmati, D., Ghelloudj, O., & Amirat, A. (2017). Correlation between defect depth and defect length through a reliability index when evaluating of the remaining life of steel pipeline under corrosion and crack defects. Engineering Failure Analysis, 79, 171–185. doi:10.1016/j.engfailanal.2017.04.025
  • Zhang, P., Su, L., Qin, G., Kong, X., & Peng, Y. (2019). Failure probability of corroded pipeline considering the correlation of random variables. Engineering Failure Analysis, 99, 34–45. doi:10.1016/j.engfailanal.2019.02.002
  • Zhou, W. (2011). Reliability evaluation of corroding pipelines considering multiple failure modes and time-dependent internal pressure. Journal of Infrastructure Systems, 17(4), 216–224. doi:10.1061/(ASCE)IS.1943-555X.0000063
  • Zimmerman, T., Cosham, A., Hopkins, P., & Sanderson, N. (1998). Can limit states design be used to design a pipeline above 80% SMYS?. In Omae 1998: 17th International Conference on offshore mechanics and arctic engineering, p. 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.