Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 19, 2023 - Issue 11
275
Views
0
CrossRef citations to date
0
Altmetric
Article

Long-term deformation analysis of prestressed concrete bridges under ambient thermal and vehicle loads

, , &
Pages 1656-1675 | Received 02 Jun 2021, Accepted 13 Nov 2021, Published online: 23 Mar 2022

References

  • Bažant, Z. P., Cusatis, G., & Cedolin, L. (2004). Temperature effect on concrete creep modeled by microprestress-solidification theory. Journal of Engineering Mechanics, 130, 691–699. doi:10.1061/(ASCE)0733-9399(2004)130:6(691)
  • Bažant, Z. P., & Kim, J. K. (1992). Improved prediction model for time-dependent deformations of concrete: Part 4 - Temperature effects. Materials and Structures, 25, 84–94. doi:10.1007/BF02472461
  • Bažant, Z. P., & Yu, Q. (2013). Relaxation of prestressing steel at varying strain and temperature: Viscoplastic constitutive relation. Journal of Engineering Mechanics, 139, 814–823. doi:10.1061/(ASCE)EM.1943-7889.0000533
  • Bažant, Z. P., Yu, Q., & Li, G. H. (2012). Excessive long-time deflections of prestressed box girders. II: Numerical analysis and lessons learned. Journal of Structural Engineering, 138, 687–696. doi:10.1061/(ASCE)ST.1943-541X.0000375
  • Beltempo, A., Bursi, O. S., Cappello, C., Zonta, D., & Zingales, M. (2018). A viscoelastic model for the long‐term deflection of segmental prestressed box girders. Computer-Aided Civil and Infrastructure Engineering, 33, 64–78. doi:10.1111/mice.12311
  • Cao, Y. H., Yim, J., Zhao, Y., & Wang, M. L. (2011). Temperature effects on cable stayed bridge using health monitoring system: A case study. Structural Health Monitoring, 10, 523–537. doi:10.1177/1475921710388970
  • Chen, X. D., Bu, J. W., Fan, X. Q., Lu, J., & Xu, L. (2017). Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension. Construction and Building Materials, 133, 367–375. doi:10.1016/j.conbuildmat.2016.12.085
  • Clark, L. A., & Church, J. G. (1987). Thermal curvatures and strains in cracked reinforced concrete beams. Proceedings of the Institution of Civil Engineers, 83, 197–212. doi:10.1680/iicep.1987.348
  • Elbadry, M., & Ghali, A. (1986). Thermal stresses and cracking of concrete bridges. Journal Proceedings, 83, 1001–1009.
  • Fu, X. Q., Huang, S. Y., Li, R., & Guo, Q. (2016). Thermal load prediction considering solar radiation and weather. Energy Procedia, 103, 3–8. doi:10.1016/j.egypro.2016.11.240
  • Furber, B. N. (1979). The international journal of heat and fluid flow. International Journal of Heat and Fluid Flow, 1(1), 2. doi:10.1016/0142-727X(79)90017-1
  • Furtmüller, T., Adam, C., & Veit-Egerer, R. (2022). Variable mass loading effect on the long-term ambient response of a freeway bridge. Structure and Infrastructure Engineering, 18, 330–315. doi:10.1080/15732479.2020.1849321
  • Havlásek, P., & Jirásek, M. (2016). Multiscale modeling of drying shrinkage and creep of concrete. Cement and Concrete Research, 85, 55–74. doi:10.1016/j.cemconres.2016.04.001
  • Hedegaard, B. D., French, C. E. W., & Shield, C. K. (2016). Effects of cyclic temperature on the time-dependent behavior of posttensioned concrete bridges. Journal of Structural Engineering, 142, 04016062. doi:10.1061/(ASCE)ST.1943-541X.0001538
  • Hedegaard, B. D., French, C. E. W., & Shield, C. K. (2017). Time-dependent monitoring and modeling of I-35W St. Anthony Falls Bridge. II: Finite-element modeling. Journal of Bridge Engineering, 22, 04017026. doi:10.1061/(ASCE)BE.1943-5592.0001054
  • Hohberg, J. M. (1978). Creep of structural concrete: Influence factors and their implementation in prediction. Techn. Univ., Inst. für Baukonstruktionen u. Festigkeit, Fachbereich Bauingenieur-u. Vermessungswesen.
  • Hossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: Analysis and field measurements. Structure and Infrastructure Engineering, 6, 1–12.
  • Huang, H. D., Huang, S. S., & Pilakoutas, K. (2018). Modeling for assessment of long-term behavior of prestressed concrete box-girder bridges. Journal of Bridge Engineering, 23, 04018002. doi:10.1061/(ASCE)BE.1943-5592.0001210
  • Kim, S. H., Park, S. J., Wu, J. X., & Won, J. H. (2015). Temperature variation in steel box girders of cable-stayed bridges during construction. Journal of Constructional Steel Research, 112, 80–92. doi:10.1016/j.jcsr.2015.04.016
  • Li, K. F., Li, C. Q., & Chen, Z. Y. (2009). Influential depth of moisture transport in concrete subject to drying–wetting cycles. Cement and Concrete Composites, 31, 693–698. doi:10.1016/j.cemconcomp.2009.08.006
  • Meng, Q. L., & Zhu, J. S. (2018). Fine temperature effect analysis–based time-varying dynamic properties evaluation of long-span suspension bridges in natural environments. Journal of Bridge Engineering, 23, 04018075. doi:10.1061/(ASCE)BE.1943-5592.0001279
  • Meng, Q. L., Zhu, J. S., & Wang, T. L. (2019). Numerical prediction of long-term deformation for prestressed concrete bridges under random heavy traffic loads. Journal of Bridge Engineering, 24, 04019107. doi:10.1061/(ASCE)BE.1943-5592.0001489
  • Nandan, H., & Singh, M. P. (2014). Effects of thermal environment on structural frequencies: Part I–A simulation study. Engineering Structures, 81, 480–490. doi:10.1016/j.engstruct.2014.06.046
  • Priestley, M. J. N. (1978). Design of concrete bridges for temperature gradients. Journal Proceedings, 75, 209–217.
  • Ryu, D. W., Ko, J. W., & Noguchi, T. (2011). Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete. Cement and Concrete Composites, 33, 142–153. doi:10.1016/j.cemconcomp.2010.09.009
  • Sakata, K., & Ayano, T. (2000). Effect of ambient temperature and humidity on creep and shrinkage of concrete. Special Publication, 194, 187–214.
  • Song, X., Melhem, H., Li, J., Xu, Q., & Cheng, L. (2016). Effects of solar temperature gradient on long-span concrete box girder during cantilever construction. Journal of Bridge Engineering, 21, 04015061. doi:10.1061/(ASCE)BE.1943-5592.0000844
  • Sousa, H., Bento, J., & Figueiras, J. (2013). Construction assessment and long-term prediction of prestressed concrete bridges based on monitoring data. Engineering Structures, 52, 26–37. doi:10.1016/j.engstruct.2013.02.003
  • Wang, W. Y., Liu, B., & Kodur, V. (2013). Effect of temperature on strength and elastic modulus of high-strength steel. Journal of Materials in Civil Engineering, 25, 174–182. doi:10.1061/(ASCE)MT.1943-5533.0000600
  • Wang, Y. F., Ma, Y. S., Han, B., & Deng, S. Y. (2013). Temperature effect on creep behavior of CFST arch bridges. Journal of Bridge Engineering, 18, 1397–1405. doi:10.1061/(ASCE)BE.1943-5592.0000484
  • Wendner, R., Tong, T., Strauss, A., & Yu, Q. (2015). A case study on correlations of axial shortening and deflection with concrete creep asymptote in segmentally-erected prestressed box girders. Structure and Infrastructure Engineering, 11, 1672–1687. doi:10.1080/15732479.2014.992442
  • Westgate, R., Koo, K. Y., & Brownjohn, J. (2015). Effect of solar radiation on suspension bridge performance. Journal of Bridge Engineering, 20, 04014077. doi:10.1061/(ASCE)BE.1943-5592.0000668
  • Yang, M., Gong, J., & Yang, X. (2020). Refined calculation of time-dependent prestress losses in prestressed concrete girders. Structure and Infrastructure Engineering, 4, 1–17.
  • Zhu, J. S., & Meng, Q. L. (2017). Effective and fine analysis for temperature effect of bridges in natural environments. Journal of Bridge Engineering, 22, 04017017. doi:10.1061/(ASCE)BE.1943-5592.0001039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.