Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 6
243
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamic response of cable-stayed bridge under wind-wave-current action considering pile-soil interaction

, , , , & ORCID Icon
Pages 819-833 | Received 04 Nov 2021, Accepted 28 Apr 2022, Published online: 15 Sep 2022

References

  • CCC Highway Consultants Co., L. (2004). (Ed.). Wind-resistent design specification for highway bridges (JTG/T D60-). Beijing, China: Ministry of Transport of the People’s Republic of China.
  • CCCC First Harbor Consultants Co., L. (2010). Load code for harbour engineering. Beijing, China: Ministry of Transport of the People’s Republic of China.
  • Chen, X., Matsumoto, M., & Kareem, A. (2000). Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, 126(1), 7–16. doi:10.1061/(ASCE)0733-9399(2000)126:1(7)
  • Chen, Z. W., Xu, Y. L., Xia, Y., Li, Q., & Wong, K. Y. (2011). Fatigue analysis of long-span suspension bridges under multiple loading: Case study. Engineering Structures, 33(12), 3246–3256. doi:10.1016/j.engstruct.2011.08.027
  • China Railway Design CO., L. (2017). Code for design of subgrade and foundation of Railway Bridge and culvert. Beijing, China: China Railway Publishing House.
  • Davenport, A. G. (1962). Buffeting of suspension bridge by storm winds. Journal of the Structural Division, 88(3), 233–270. doi:10.1061/JSDEAG.0000773
  • Fang, C., Li, Y., Chen, X., & Tang, H. (2019). Extreme response of a sea-crossing bridge tower under correlated wind and waves. Journal of Aerospace Engineering, 32(6), 05019003. doi:10.1061/(ASCE)AS.1943-5525.0001083
  • Fang, C., Li, Y., Wei, K., Zhang, J., & Liang, C. (2019). Vehicle–bridge coupling dynamic response of sea-crossing railway bridge under correlated wind and wave conditions. Advances in Structural Engineering, 22(4), 893–906. doi:10.1177/1369433218781423
  • Fenton, J. D. (1985). A fifth‐order stokes theory for steady waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(2), 216–234. doi:10.1061/(ASCE)0733-950X(1985)111:2(216)
  • Guo, A., Liu, J., Chen, W., Bai, X., Liu, G., Liu, T., … Li, H. (2016). Experimental study on the dynamic responses of a freestanding bridge tower subjected to coupled actions of wind and wave loads. Journal of Wind Engineering and Industrial Aerodynamics, 159, 36–47. doi:10.1016/j.jweia.2016.10.003
  • Han, J., Pan, L., Lu, B., Zhang, Z., Bi, X., & Zhu, B. (2022). Dynamic analysis of the wind-wave-current-bridge system considering pile-soil interaction. Advances in Structural Engineering, 136943322211140. doi:10.1177/13694332221114067
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. doi:10.1016/0021-9991(81)90145-5
  • Huang, B., Ren, Q., Cui, X., Wan, T., Zhang, C., Zhu, B., & Ding, H. (2021). Wave characteristics and spectrum for Pingtan Strait Bridge location. Ocean Engineering, 219, 108367. doi:10.1016/j.oceaneng.2020.108367
  • Launder, B., & Spalding, D. B. (1974). The numerical computation of turbulent flow computer methods. Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289. doi:10.1016/0045-7825(74)90029-2
  • Meng, S., Ding, Y., & Zhu, H. (2018). Stochastic response of a coastal cable-stayed bridge subjected to correlated wind and waves. Journal of Bridge Engineering, 23(12), 04018091. doi:10.1061/(ASCE)BE.1943-5592.0001308
  • Qu, K., Wen, B. H., Ren, X. Y., Kraatz, S., Sun, W. Y., Deng, B., & Jiang, C. B. (2020). Numerical investigation on hydrodynamic load of coastal bridge deck under joint action of solitary wave and wind. Ocean Engineering, 217, 108037. doi:10.1016/j.oceaneng.2020.108037
  • Rodi, W. (1984). Turbulence models and their application in hydraulics: A state-of-the-art review, third edition. Turbulence models and their application in hydraulics: A state-of-the-art review (3rd ed.). doi:10.1201/9780203734896
  • Sha, Y., Amdahl, J., Aalberg, A., & Yu, Z. (2018). Numerical investigations of the dynamic response of a floating bridge under environmental loadings. Ships and Offshore Structures, 13(1), 113–126. doi:10.1080/17445302.2018.1426818
  • Simiu, E., Shaver, J. R., & Filliben, J. J. (1981). Wind speed distributions and reliability estimates. Journal of the Structural Division, 107(5), 1003–1007. doi:10.1061/JSDEAG.0005687
  • Tong, D., Liao, C., & Chen, J. (2019). Wave-monopile-seabed interaction considering nonlinear pile-soil contact. Computers and Geotechnics, 113, 103076. doi:10.1016/j.compgeo.2019.04.021
  • Wei, K., Arwade, S. R., Myers, A. T., & Valamanesh, V. (2016). Directional effects on the reliability of non-axisymmetric support structures for offshore wind turbines under extreme wind and wave loadings. Engineering Structures, 106, 68–79. doi:10.1016/j.engstruct.2015.10.016
  • Xiao, H., Huang, W., Tao, J., & Liu, C. (2013). Numerical modeling of wave-current forces acting on horizontal cylinder of marine structures by VOF method. Ocean Engineering, 67, 58–67. doi:10.1016/j.oceaneng.2013.01.027
  • Yang, Z., Huang, B., Kang, A., Zhu, B., Han, J., Yin, R., & Li, X. (2021). Experimental study on the solitary wave-current interaction and the combined forces on a vertical cylinder. Ocean Engineering, 236, 109569. doi:10.1016/j.oceaneng.2021.109569
  • Zhu, B., Zhang, J., Pan, L., Li, X., & Kang, A. (2019). Experimental study of regular wave forces on dumbbell-shaped cofferdam of sea-crossing bridge. Bridge Construction, 49(5), 21–26. doi:10.1016/S1010-5182(06)60391-0
  • Zhu, J., Zhang, W., & Wu, M. X. (2018). Coupled dynamic analysis of the vehicle-bridge-wind-wave system. Journal of Bridge Engineering, 23(8), 04018054. doi:10.1061/(ASCE)BE.1943-5592.0001268
  • Zou, L., Zhao, R., & Chen, X. (2006). Analysis of the response to earthquake of the pile-soil-single tower cable stayed bridge interaction. Chinese Journal of Computational Mechanics, 23(2), 242–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.