Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 20, 2024 - Issue 6
152
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation on static damage of concrete bridge under shear loading based on acoustic emission

, ORCID Icon, &
Pages 910-927 | Received 20 Aug 2021, Accepted 08 May 2022, Published online: 10 Oct 2022

References

  • ABAQUS. (2007). User’s manual. Providence, RI: ABAQUS Inc.
  • Aggelis, D. G. (2011). Classification of cracking mode in concrete by acoustic emission parameters. Mechanics Research Communications, 38(3), 153–157. doi:10.1016/j.mechrescom.2011.03.007
  • Alam, S. Y., Saliba, J., & Loukili, A. (2014). Fracture examination in concrete through combined digital image correlation and acoustic emission techniques. Construction and Building Materials, 69(oct.30), 232–242. doi:10.1016/j.conbuildmat.2014.07.044
  • Aldahdooh, M. A., Bunnori, N. M., & Johari, M. M. (2013). Damage evaluation of reinforced concrete beams with varying thickness using the acoustic emission technique. Construction and Building Materials, 44(44), 812–821. doi:10.1016/j.conbuildmat.2012.11.099
  • Bertolini, L. (2008). Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering, 4(2), 123–137. doi:10.1080/15732470601155490
  • Chana, & Singh, P. (1986). Shear failure of reinforced concrete beams. Engineering Structures, 9(87), 32–38. doi:10.1016/0141-0296(87)90038-1
  • Colombo, S., Main, I. G., & Forde, M. C. (2003). Assessing damage of reinforced concrete beam using "b-value" analysis of acoustic emission signals. Journal of Materials in Civil Engineering, 15(3), 280–286. doi:10.1061/(ASCE)0899-1561(2003)15:3(280)
  • Dong, Y., Zhang, H., & Zhong, C. (1999). Study on stress-strain curves of concrete under shear loading. Mechanics in Engineering, 21(6), 35–37. doi:10.6052/1000-0992-1999-190
  • Elbatanouny, M. K., Ziehl, P. H., Larosche, A., Mangual, J., Matta, F., & Nanni, A. (2014). Acoustic emission monitoring for assessment of prestressed concrete beams. Construction and Building Materials, 58, 46–53. doi:10.1016/j.conbuildmat.2014.01.100
  • Farhidzadeh, A., Dehghan-Niri, E., Salamone, S., Luna, B., & Whittaker, A. (2013). Monitoring crack propagation in reinforced concrete shear walls by acoustic emission. Journal of Structural Engineering, 139(12), 116–134. doi:10.1061/(ASCE)ST.1943-541X.0000781
  • GB 50010-2010. (2010). Code for design of concrete structures. Beijing, China: Ministry of Transport of the People’s Republic of China.
  • GB/T 50081-2002. (2002). Standard for test method of mechanical properties on ordinary concrete. Beijing, China: Ministry of Construction of the People’s Republic of China
  • Geng, J., Sun, Q., Zhang, Y., Cao, L., & Zhang, W. (2017). Studying the dynamic damage failure of concrete based on acoustic emission. Construction and Building Materials, 149, 9–16. doi:10.1016/j.conbuildmat.2017.05.054
  • Goszczyńska, B. (2014). Analysis of the process of crack initiation and evolution in concrete with acoustic emission testing. Archives of Civil and Mechanical Engineering, 14(1), 134–143. doi:10.1016/j.acme.2013.06.002
  • Guo, M., Alam, S. Y., Bendimerad, A. Z., Grondin, F., Rozière, E., & Loukili, A. (2017). Fracture process zone characteristics and identification of the micro-fracture phases in recycled concrete. Engineering Fracture Mechanics, 181, 101–115. doi:10.1016/j.engfracmech.2017.07.004
  • Hu, B., & Wu, Y. F. (2017). Quantification of shear cracking in reinforced concrete beams. Engineering Structures, 147, 666–678. doi:10.1016/j.engstruct.2017.06.035
  • JCMSIII-B5706. (2003). Monitoring method for active cracks in concrete by acoustic emission. Japan: Federation of Construction Material Industries.
  • JTG D60-2015. (2015). General specifications for design of highway bridges and culverts. Beijing, China: Ministry of Transport of the People’s Republic of China.
  • Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451–461. doi:10.1016/S0031-3203(02)00060-2
  • Li, X., P., Zhang, L. S., & Zhao, G. F. (2005). Experimental study on freeze-resisting shear behavior of new and old concrete bond surface. Journal of Hydraulic Engineering, 36(3), 339–344. doi:10.3321/j.issn:0559-9350.2005.03.014
  • Marta, S. (2014). Shear failure mechanism in concrete beams. Procedia Materials Science, 3, 1977–1982. doi:10.1016/j.mspro.2014.06.318
  • Mattock, A., & H., Hawkins, N., M. (1972). Shear transfer in reinforced concrete—Recent research. PCI Journal, 17(2), 55–75. doi:10.15554/pcij.03011972.55.75
  • Nor, N. M., Ibrahim, A., Bunnori, N. M., & Saman, H. M. (2013). Acoustic emission signal for fatigue crack classification on reinforced concrete beam. Construction and Building Materials, 49(dec), 583–590. doi:10.1016/j.conbuildmat.2013.08.057
  • Ohno, K., & Ohtsu, M. (2010). Crack classification in concrete based on acoustic emission. Construction and Building Materials, 24(12), 2339–2346. doi:10.1016/j.conbuildmat.2010.05.004
  • Ohtsu, M., Isoda, T., & Tomoda, Y. (2007). Acoustic emission techniques standardized for concrete structures. Journal of Acoustic Emission, 25, 21–32.
  • Peng, J., Hu, S., Zhang, J., Cai, C. S., & Li, L. Y. (2019). Influence of cracks on chloride diffusivity in concrete: A five-phase mesoscale model approach. Construction and Building Materials, 197, 587–596. doi:10.1016/j.conbuildmat.2018.11.208
  • Physical Acoustics Corporation (PAC). (2007). PC1-2 based AE system user’s manual, Rev 3.
  • Prem, P. R., & Murthy, A. R. (2017). Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending. Applied Acoustics, 117, 28–38. doi:10.1016/j.apacoust.2016.08.006
  • Sharma, G., Sharma, S., & Sharma, S. K. (2022). Monitoring structural behavior of concrete beams reinforced with steel and GFRP bars using acoustic emission and digital image correlation techniques. Structure and Infrastructure Engineering, 18(2), 167–182. doi:10.1080/15732479.2020.1836661
  • Shigeishi, M., Colombo, S., Broughton, K. J., Rutledge, H., Batchelor, A. J., & Forde, M. C. (2001). Acoustic emission to assess and monitor the integrity of bridges. Construction and Building Materials, 15(1), 35–49. doi:10.1016/S0950-0618(00)00068-4
  • Suzuki, T., Ogata, H., Takada, R., Aoki, M., & Ohtsu, M. (2010). Use of acoustic emission and x-ray computed tomography for damage evaluation of freeze-thawed concrete. Construction and Building Materials, 24(12), 2347–2352. doi:10.1016/j.conbuildmat.2010.05.005
  • Suzuki, T., Ohtsu, M., & Shigeishi, M. (2007). Relative damage evaluation of concrete in a road bridge by AE rate-process analysis. Materials and Structures, 40(2), 221–227. doi:10.1617/s11527-006-9133-9
  • Vidya Sagar, R., Raghu Prasad, B. K., & Sharma, R. (2012). Evaluation of damage in reinforced concrete bridge beams using acoustic emission technique. Nondestructive Testing and Evaluation, 27(2), 95–108. doi:10.1080/10589759.2011.610452
  • Williams, G., & Higgins, C. (2008). Fatigue of diagonally cracked RC girders repaired with CFRP. Journal of Bridge Engineering, 13(1), 24–33. doi:10.1061/(ASCE)1084-0702(2008)13:1(24)
  • Yoon, D. J., Park, P., Jung, J. C., & Lee, S. S. (2002). Assessment of the integrity of concrete bridge structures by acoustic emission technique. International Society for Optics and Photonics, 4704, 206–214. doi:10.1117/12.470726
  • Yuan, M., Yan, D., Zhong, H., & Liu, Y. (2017). Experimental investigation of high-cycle fatigue behavior for prestressed concrete box-girders. Construction and Building Materials, 157, 424–437. doi:10.1016/j.conbuildmat.2017.09.131
  • Yuyama, S., Li, Z. W., Ito, Y., & Arazoe, M. (1999). Quantitative analysis of fracture process in RC column foundation by moment tensor analysis of acoustic emission. Construction and Building Materials, 13(1–2), 87–97. doi:10.1016/S0950-0618(99)00011-2
  • Yuyama, S., Yokoyama, K., Niitani, K., Ohtsu, M., & Uomoto, T. (2007). Detection and evaluation of failures in high-strength tendon of prestressed concrete bridges by acoustic emission. Construction and Building Materials, 21(3), 491–500. doi:10.1016/j.conbuildmat.2006.04.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.