1,897
Views
0
CrossRef citations to date
0
Altmetric
Progress Report

Recent progress in the development of backplane thin film transistors for information displays

, , , , &
Pages 159-168 | Received 13 Mar 2023, Accepted 17 May 2023, Published online: 14 Jun 2023

References

  • M.K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, npj Flexible Electron 2, 10 (2018).
  • H.J. Jang, J.Y. Lee, J. Kwak, D. Lee, J.-H. Park, B. Lee, and Y.Y. Noh, J Inf. Disp 20, 1–8 (2019).
  • H. Zhu, E.-S. Shin, A. Liu, D. Ji, Y. Xu, and Y.-Y. Noh, Adv. Funct. Mater 30, 1904588 (2020).
  • M. Chhowalla, D. Jena, and H. Zhang, Nat. Rev. Mater. 1, 16052 (2016).
  • M.H. Cho, C.H. Choi, H.J. Seul, H.C. Cho, and J.K. Jeong, ACS Appl. Mater. Interfaces 13, 16628 (2021).
  • J. Sheng, T. Hong, H.-M. Lee, K. Kim, M. Sasase, J. Kim, H. Hosono, and J.-S. Park, ACS Appl. Mater. Interfaces 11, 40300 (2019).
  • M.H. Cho, M.J. Kim, H. Seul, P.S. Yun, J.U. Bae, K.-S. Park, and J.K. Jeong, J. Inf. Displ. 20, 73 (2019).
  • H.J. Yang, H.J. Seul, M.J. Kim, Y. Kim, H.C. Cho, M.H. Cho, Y.H. Song, H. Yang, and J.K. Jeong, ACS Appl. Mater. Interfaces 12, 52937 (2020).
  • H. Klasens, and H. Koelmans, Solid State Electronics 7, 701 (1964).
  • K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
  • H.J. Seul, M.J. Kim, H.J. Yang, M.H. Cho, M.H. Cho, W.-B. Song, and J.K. Jeong, ACS Appl. Mater. Interfaces 12, 33887 (2020).
  • Y. Shin, S.T. Kim, K. Kim, M.Y. Kim, S. Oh, and J.K. Jeong, Sci. Rep. 7, 1 (2017).
  • M. Furuta, K. Shimpo, T. Kataoka, D. Tanaka, T. Matsumura, Y. Magari, R. Velichko, D. Sasaki, E. Kawashima, and Y. Tsuruma, presented at SID Symposium Digest of Technical Papers 2021.
  • Y. Magari, T. Kataoka, W. Yeh, and M. Furuta, Nat. Commun. 13, 1078 (2022).
  • H.J. Park, T. Kim, M.J. Kim, H. Lee, J.H. Lim, and J.K. Jeong, Ceram. Int. 48, 12806 (2022).
  • B.K. Kim, N. On, C.H. Choi, M.J. Kim, S. Kang, J.H. Lim, and J.K. Jeong, IEEE Electron Device Lett. 42, 347 (2021).
  • K.T. Kim, J. Kim, Y.-H. Kim, and S.K. Park, IEEE Electron Device Lett. 35, 850 (2014).
  • J.Y. Choi, S. Kim, D.H. Kim, and S.Y. Lee, Thin Solid Films 594, 293 (2015).
  • B.H. Lee, A. Sohn, S. Kim, and S.Y. Lee, Sci. Rep. 9, 1 (2019).
  • H. Ji, A.Y. Hwang, C.K. Lee, P.S. Yun, J.U. Bae, K.-S. Park, and J.K. Jeong, IEEE Trans. Electron Devices 62, 1195 (2015).
  • T. Kim, M.J. Kim, J. Lee, and J.K. Jeong, ACS Appl. Mater. Interfaces 11, 22501 (2019).
  • S.T. Kim, Y. Shin, P.S. Yun, J.U. Bae, I.J. Chung, and J.K. Jeong, Electron. Mater. Lett. 13, 406 (2017).
  • H.W. Zan, C.C. Yeh, H.F. Meng, C.C. Tsai, and L.H. Chen, Adv. Mater. 24, 3509 (2012).
  • J.-M. Park, H.-D. Kim, H. Joh, S.C. Jang, K. Park, Y.C. Park, H.-H. Nahm, Y.-H. Kim, S. Jeon, and H.-S. Kim, NPG Asia Mater. 12, 1 (2020).
  • T.J. Yen, A. Chin, and V. Gritsenko, Nanomaterials 11, 92 (2021).
  • H.-M. Kim, S.-H. Choi, H.J. Jeong, J.-H. Lee, J. Kim, and J.-S. Park, ACS Appl. Mater. Interfaces 13, 30818 (2021).
  • J.H. Bae, J.H. Lee, S.P. Park, T.S. Jung, H.J. Kim, D. Kim, S.-W. Lee, K.-S. Park, S. Yoon, and I. Kang, ACS Appl. Mater. Interfaces 12, 38350 (2020).
  • W. Maeng, S.-H. Lee, J.-D. Kwon, J. Park, and J.-S. Park, Ceram. Int. 42, 5517 (2016).
  • F. Shan, A. Liu, H. Zhu, W. Kong, J. Liu, B. Shin, E. Fortunato, R. Martins, and G. Liu, J. Mater. Chem. C 4, 9438 (2016).
  • J. Yang, B. Wang, Y. Zhang, X. Ding, and J. Zhang, J. Mater. Chem. C 6, 12584 (2018).
  • A. Liu, H. Zhu, Z. Guo, Y. Meng, G. Liu, E. Fortunato, R. Martins, and F. Shan, Adv. Mater. 29, 1701599 (2017).
  • A. Zavabeti, P. Aukarasereenont, H. Tuohey, N. Syed, A. Jannat, A. Elbourne, K.A. Messalea, B.Y. Zhang, B.J. Murdoch, and J.G. Partridge, Nat. Electron. 4, 277 (2021).
  • C. Zhao, C. Tan, D.-H. Lien, X. Song, M. Amani, M. Hettick, H.Y.Y. Nyein, Z. Yuan, L. Li, and M.C. Scott, Nat. Nanotechnol. 15, 53 (2020).
  • T. Kim, C.H. Choi, P. Byeon, M. Lee, A. Song, K.-B. Chung, S. Han, S.-Y. Chung, K.-S. Park, and J.K. Jeong, npj 2D Mater. Appl. 6, 4 (2022).
  • a) J.S. Park, K.S. Son, T.S. Kim, J.S. Jung, K.-H. Lee, W.-J. Maeng, H.-S. Kim, E.S. Kim, K.-B. Park, and J.-B. Seon, IEEE Electron Device Letters 2010, 31, 960; b) K.-S. Son, J.-S. Jung, K.-H. Lee, T.-S. Kim, J.-S. Park, Y.-H. Choi, K. Park, J.-Y. Kwon, B. Koo, S.-Y. Lee, IEEE electron device letters 2010, 31, 219.
  • S. Hu, K. Lu, H. Ning, Z. Zheng, H. Zhang, Z. Fang, R. Yao, M. Xu, L. Wang, and L. Lan, IEEE Electron Device Lett. 38, 879 (2017).
  • Y. Shin, S.T. Kim, K. Kim, M.Y. Kim, S. Oh, and J.K. Jeong, Sci. Rep. 7, 10885 (2017).
  • J.-M. Park, H. Lee, G. Lee, S.C. Jang, Y.H. Chang, H. Hong, K.-B. Chung, K.J. Lee, D.H. Kim, and H.-S. Kim, ACS App. Mater. Interfaces 15, 1525 (2022).
  • a) S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, and H.J. Snaith, Nature, 571, 245 (2019); b) X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R. H. Friend, F. Gao, Nature Materials 2021, 20, 10; c) J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin, N. G. Park, Chem Rev 2020, 120, 7867; d) Q. Jiang, M. Chen, J. Li, M. Wang, X. Zeng, T. Besara, J. Lu, Y. Xin, X. Shan, B. Pan, C. Wang, S. Lin, T. Siegrist, Q. Xiao, Z. Yu, ACS Nano 2017, 11, 1073.
  • D.B.M.C.R. Kagan, and C.D. Dimitrakopoulos, Science 286, 945 (1999).
  • K. Zheng, and T. Pullerits, The J. Phys. Chem. Lett. 10, 5881 (2019).
  • a) F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson, J. Hu, L. Gao, C. Xiao, O.G. Reid, X. Chen, Q. Zhao, P.F. Ndione, J.J. Berry, W. You, A. Walsh, M.C. Beard, and K. Zhu, J. Am. Chem. Soc., 141, 5972 (2019); b) F. Zhang, D. H. Kim, K. Zhu, Current Opinion in Electrochemistry 2018, 11, 105.
  • a); b) S. Zhou, G. Zhou, Y. Li, X. Xu, Y.-J. Hsu, J. Xu, N. Zhao, and X. Lu, ACS Energy Lett., 5, 2614 (2020).
  • B. Jeong, L. Veith, T. Smolders, M.J. Wolf, and K. Asadi, Adv Mater 33, e2100486 (2021).
  • W. Ke, and M.G. Kanatzidis, Nat. Commun. 10, 965 (2019).
  • H. Zhu, A. Liu, K.I. Shim, H. Jung, T. Zou, Y. Reo, H. Kim, J.W. Han, Y. Chen, H.Y. Chu, J.H. Lim, H.J. Kim, S. Bai, and Y.Y. Noh, Nat Commun 13, 1741 (2022).
  • D. Meggiolaro, D. Ricciarelli, A.A. Alasmari, F.A.S. Alasmary, and F. De Angelis, The J. Phys. Chem. Lett. 11, 3546 (2020).
  • G. Abiram, F.H. Gourji, S. Pitchaiya, P. Ravirajan, T. Murugathas, and D. Velauthapillai, Sci Rep 12, 2455 (2022).
  • T. Matsushima, S. Hwang, A.S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, M. Yahiro, and C. Adachi, Adv Mater 28, 10275 (2016).
  • Y. Li, K. Cui, X. Xu, J. Chen, Y. Liu, J. Wu, S. Lu, W. Qin, and X. Wu, The J. Phys. Chem. C 124, 15107 (2020).
  • X. Hu, H. Zhou, Z. Jiang, X. Wang, S. Yuan, J. Lan, Y. Fu, X. Zhang, W. Zheng, X. Wang, X. Zhu, L. Liao, G. Xu, S. Jin, and A. Pan, ACS Nano 11, 9869 (2017).
  • L. Tang, Y. Peng, Z. Zhou, Y. Wu, J. Xu, J. Li, Y. Du, L. Huang, H. Cai, J. Ni, and J. Zhang, Appl. Phy. A 124, 624 (2018).
  • W. Yu, F. Li, L. Yu, M.R. Niazi, Y. Zou, D. Corzo, A. Basu, C. Ma, S. Dey, M.L. Tietze, U. Buttner, X. Wang, Z. Wang, M.N. Hedhili, C. Guo, T. Wu, and A. Amassian, Nat. Commun 9, 5354 (2018).
  • J. Wang, S.P. Senanayak, J. Liu, Y. Hu, Y. Shi, Z. Li, C. Zhang, B. Yang, L. Jiang, D. Di, A.V. Ievlev, O.S. Ovchinnikova, T. Ding, H. Deng, L. Tang, Y. Guo, J. Wang, K. Xiao, D. Venkateshvaran, L. Jiang, D. Zhu, and H. Sirringhaus, Adv. Mater 31, e1902618 (2019).
  • T. Matsushima, M.R. Leyden, T. Fujihara, C. Qin, A.S.D. Sandanayaka, and C. Adachi, Appl. Phys. Lett., 115 (2019).
  • H. Shen, J. Li, H. Wang, J. Ma, J. Wang, H. Luo, and D. Li, J Phys Chem Lett 10, 7 (2019).
  • Y. Meng, C. Lan, F. Li, S. Yip, R. Wei, X. Kang, X. Bu, R. Dong, H. Zhang, and J.C. Ho, ACS Nano 13, 6060 (2019).
  • J. Li, Z. Zhou, Y. Peng, J. Zhang, N. Guo, and Y. Sun, Org. Electron., 84 (2020).
  • A.N. Aleshin, I.P. Shcherbakov, O.P. Chikalova-Luzina, L.B. Matyushkin, M.K. Ovezov, A.M. Ershova, I.N. Trapeznikova, and V.N. Petrov, Synth. Metals 260 (2020).
  • H. Zhu, A. Liu, K.I. Shim, J. Hong, J.W. Han, and Y.Y. Noh, Adv Mater 32, e2002717 (2020).
  • S.P. Senanayak, M. Abdi-Jalebi, V.S. Kamboj, R. Carey, R. Shivanna, T. Tian, G. Schweicher, J. Wang, N. Giesbrecht, D. Di Nuzzo, H.E. Beere, P. Docampo, D.A. Ritchie, D. Fairen-Jimenez, R.H. Friend, and H. Sirringhaus, Sci Adv 6, eaaz4948 (2020).
  • N. Guo, J. Li, S. Yang, J. Zhang, J. Ni, and H. Cai, Nanotechnology 32 (2021).
  • S. Shao, W. Talsma, M. Pitaro, J. Dong, S. Kahmann, A.J. Rommens, G. Portale, and M.A. Loi, Adv. Funct. Mater. 31, 2008478 (2021).
  • A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou, M.-G. Kim, and Y.-Y. Noh, Nature Electron. 5, 78 (2022).
  • Y. Liu, P.A. Chen, X. Qiu, J. Guo, J. Xia, H. Wei, H. Xie, S. Hou, M. He, X. Wang, Z. Zeng, L. Jiang, L. Liao, and Y. Hu, iScience 25, 104109 (2022).
  • ACS Nano 2013, 7, 4, 2898–2926, 2013, progress, challenges, and opportunities in Two-Dimensional Materials Beyond Graphene.
  • Nature Nanotechnology 7, 699-712 (2012), Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
  • Nature Reviews Materials 1, 16052 (2016),: Two-dimensional semiconductors for transistor.
  • K. Cho, J. Park, J. Kim, K. Kang, T. Kim, J. Shin, B. Choi, S. Chung, and T. Lee, Adv. Mater 30, 1705540 (2018).
  • Y. Du, H. Liu, A.T. Neal, M. Si, and P.D. Ye, IEEE Electron Device Lett 34, 1328–1330 (2013).
  • R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, and M. Chhowalla, Nat. Mater 13, 1128–1134 (2014).
  • S.-S. Chee, D. Seo, H. Kim, H. Jang, S. Lee, S. Moon, K. Lee, S. Kim, H. Choi, and M. Ham, Adv. Mater 31, 1804422 (2019).
  • Y. Liu, J. Guo, Y. Wu, E. Zhu, N.O. Weiss, Q. He, H. Wu, H.-C. Cheng, Y. Xu, I. Shakir, Y. Huang, and X. Duan, Nano Lett 16, 6337–6342 (2016).
  • K.K.H. Smithe, S.V. Suryavanshi, M. Munoz Rojo, A.D. Tedjarati, and E. Pop, ACS Nano 11, 8456 (2017).
  • Z. Cheng, Y. Yu, S. Singh, K. Price, S.G. Noyce, Y. Lin, L. Cao, and A.D. Franklin, Nano Lett 19, 5077 (2019).
  • Y. Jung, M. Choi, A. Nipane, A. Borah, B. Kim, A. Zangiabadi, T. Taniguchi, K. Watanabe, W. Yoo, J. Hone, and J.T. Teherani, Nature Electronics 2, 187 (2019).
  • Y. Wang, et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors, Nature 568, 70–74 (2019).
  • P.C. Shen, et al., Ultralow contact resistance between semimetal and monolayer semiconductors, Nature 593, 211–217 (2021).
  • W. Li, X. Gong, Z. Yu, L. Ma, W. Sun, S. Gao, J. Wang, and X. Wang, Nature 613, 274 (2023).
  • Y. Liu, J. Guo, and E. Zhu, Nature 557, 696 (2018).
  • S.G. Louie, and M.L. Cohen, Electronic structure of a metal-semiconductor interface, Phys. Rev. B 13, 2461–2469 (1976).
  • T. Nishimura, K. Kita, and A. Toriumi, Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface, Appl. Phys. Lett 91, 123123 (2007).
  • M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S.P. Wong, and Y. Nishi, Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application, J. Appl. Phys 105, 023702 (2009).
  • K. Sotthewes, et al., Universal Fermi-level pinning in transition-metal dichalcogenides, J. Phys. Chem. C 123, 5411–5420 (2019).
  • C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, and E. Pop, Nano Lett 16, 3824 (2016).
  • A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing, and S. Das, Benchmarking monolayer MoS2 and WS2 field-effect transistors, Nat. Commun 12, 693 (2021).
  • C. Kim, et al., Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides, ACS Nano 11, 1588–1596 (2017).
  • N. Kaushik, et al., Schottky barrier heights for Au and Pd contacts to MoS2, Appl. Phys. Lett 105, 113505 (2014).