931
Views
0
CrossRef citations to date
0
Altmetric
Progress Report

Advances in display technology: augmented reality, virtual reality, quantum dot-based light-emitting diodes, and organic light-emitting diodes

, , , ORCID Icon & ORCID Icon
Pages 219-234 | Received 20 Feb 2024, Accepted 22 Apr 2024, Published online: 09 May 2024

References

  • C.K. Bernard, Optical architectures for augmented-, virtual-, and mixed-reality headsets, 2020.
  • H.J. Jang, J.Y. Lee, G.W. Baek, J. Kwak, and J.-H. Park, Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years, J. Inf. Disp. 23, 1–17 (2022). doi:10.1080/15980316.2022.2035835
  • J. Xiong, E.L. Hsiang, Z. He, T. Zhan, and S.T. Wu, Augmented reality and virtual reality displays: Emerging technologies and future perspectives, Light Sci. Appl. 10, 216 (2021).
  • X. Hu, and H. Hua, High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics, Opt. Express 22, 13896–13903 (2014). doi:10.1364/OE.22.013896
  • A.D. Hwang, and E. Peli, An augmented-reality edge enhancement application for Google Glass, Optom. Vis. Sci. 91, 1021–1030 (2014). doi:10.1097/OPX.0000000000000326
  • H.J. Yeom, H.J. Kim, S.B. Kim, H. Zhang, B. Li, Y.M. Ji, S.H. Kim, and J.H. Park, 3D holographic head-mounted display using holographic optical elements with astigmatism aberration compensation, Opt. Express 23, 32025–32034 (2015). doi:10.1364/OE.23.032025
  • B. Kress, and W. Cummings, Optical architecture of HoloLens mixed reality headset (SPIE2017).
  • A. Maimone, A. Georgiou, and J.S. Kollin, Holographic near-eye displays for virtual and augmented reality, ACM Trans. Graph. 36, 1–16 (2017).
  • C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, Retinal 3D: Augmented reality near-eye display via pupil-tracked light field projection on retina, ACM Trans. Graph. 36, 1–13 (2017).
  • K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, Near-eye varifocal augmented reality display using see-through screens, ACM Trans. Graph 36, 1–13 (2017).
  • T. Palladino, Magic leap one field of view specs finally uncovered, https://magic-leap.reality.news/news/magic-leap-one-field-view-specs-finally-uncovered-0186278/, (2018).
  • G.Y. Lee, J.Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.H. Jeong, and B. Lee, Metasurface eyepiece for augmented reality, Nat. Commun. 9, 4562 (2018).
  • PR newswire, nreal announces nreal light, ready-to-wear mixed reality Smart glasses, https://www.prnewswire.com/news-releases/nreal-announces-nreal-light-ready-to-wear-mixed-reality-smart-glasses-300773544.html (2019).
  • Pimax, Pimax 8 K X, https://pimax.com/pimax-8k-x/.
  • S. Lee, Y. Jo, D. Yoo, J. Cho, D. Lee, and B. Lee, Tomographic near-eye displays, Nat. Commun. 10, 2497 (2019).
  • J. Kim, Y. Jeong, M. Stengel, K. Aksit, R. A. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majercik, Foveated AR: Dynamically foveated augmented reality display, ACM Trans. Graph. 38, 91–99 (2019).
  • Microsoft, and Microsoft, HoloLens, https://www.microsoft.com/en-us/hololens, 2.
  • Meta, Get started with Meta Quest 2, https://www.meta.com/quest/products/quest-2/.
  • S. Lee, M. Wang, G. Li, L. Lu, Y. Sulai, C. Jang, and B. Silverstein, Foveated near-eye display for mixed reality using liquid crystal photonics, Sci. Rep. 10, 16127 (2020).
  • Tilt Five, Tilt Five, https://www.tiltfive.com.
  • K. Bang, Y. Jo, M. Chae, and B. Lee, Lenslet VR, Thin, flat and wide-FOV virtual reality display using fresnel lens and lenslet array, IEEE Trans. Vis. Comput. Graph. 27, 2545–2554 (2021). doi:10.1109/TVCG.2021.3067758
  • O. Cakmakci, Y. Qin, P. Bosel, and G. Wetzstein, Holographic pancake optics for thin and lightweight optical see-through augmented reality, Opt. Express 29, 35206–35215 (2021). doi:10.1364/OE.439585
  • A. Yoshikaie, R. Ogawa, T. Imamura, K. Ohki, K. Seno, Y. Ogawa, K. Abe, M. Takada, Y. Mamishin, and A. Yajima, Full-color binocular retinal scan AR display with pupil tracking system, optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR) IV, SPIE, 2023, 243–251.
  • Y. Qin, W.-Y. Chen, M. O’Toole, and A.C. Sankaranarayanan, Split-Lohmann multifocal displays, ACM Trans. Graph. 42, 1–18 (2023).
  • C. Jang, K. Bang, M. Chae, B. Lee, and D. Lanman, Waveguide holography for 3D augmented reality glasses, Nat. Commun. 15, 66 (2024).
  • B. Kress, Digital optics as key enabling technologies to achieve small form factor AR display systems, Digital optical technologies 2023, SPIE, 108–119 (2023).
  • E.-L. Hsiang, Z. Yang, Q. Yang, P.-C. Lai, C.-L. Lin, and S.-T. Wu, AR/VR light engines: Perspectives and challenges, Adv. Opt. Photon. 14, 783–861 (2022). doi:10.1364/AOP.468066
  • J. Jo, P. Kim, H.-J. Kim, H. Lim, S.-R. Joung, C.-K. Yoo, D.-W. Choi, J.-Y. Yang, Y.-M. Ha, and S. Yoon, 25-1: Invited paper: OLED microdisplays for AR/VR applications: Technical approaches toward realization of over 10,000 nits full-color panels, SID Int. Symp. Dig. Tech. Pap. 53, 287-290 (2022). doi:10.1002/sdtp.15475
  • L. Qi, P. Li, X. Zhang, K.M. Wong, and K.M. Lau, Monolithic full-color active-matrix micro-LED micro-display using InGaN/AlGaInP heterogeneous integration, Light Sci. Appl. 12, 258 (2023).
  • H. Lee, J.H. Jung, S. Hong, and H.J. Choi, Near eye display based on multiplexed retinal projections for robust compensation of eye pupil variance, Opt. Express 32, 2631–2643 (2024). doi:10.1364/OE.510069
  • Q. Hou, D. Cheng, Y. Li, T. Zhang, D. Li, Y. Huang, H. Chen, Q. Wang, W. Hou, T. Yang, and Y. Wang, Stray light analysis and suppression method of a pancake virtual reality head-mounted display, Opt. Express 30, 44918–44932 (2022). doi:10.1364/OE.476078
  • J.A. LaRussa, and A.T. Gill, The holographic pancake window TM, Visual simulation and Image realism I, 120–129 (1978). doi:10.1117/12.956898
  • N. Usukura, K. Minoura, and R. Maruyama, Novel pancake-based HMD optics to improve light efficiency, J. Soc. Info. Display 31, 344–354 (2023). doi:10.1002/jsid.1212
  • L. Li, and M.J. Escuti, Super achromatic wide-angle quarter-wave plates using multi-twist retarders, Opt. Express 29, 7464–7478 (2021). doi:10.1364/OE.418197
  • C. Chen, X. Ye, J. Sun, Y. Chen, C. Huang, X. Xiao, W. Song, S. Zhu, and T. Li, Bifacial-metasurface-enabled pancake metalens with polarized space folding, Optica 9, 1314–1322 (2022). doi:10.1364/OPTICA.474650
  • J.-H. Park, and B. Lee, Holographic techniques for augmented reality and virtual reality near-eye displays, Light. Adv. Manuf. 3, 137–150 (2022).
  • D. Ni, D. Cheng, Y. Wang, T. Yang, X. Wang, C. Chi, and Y. Wang, Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion, Opt. Express 31, 11019–11040 (2023). doi:10.1364/OE.481889
  • Y. Wang, T. Yang, D. Ni, D. Cheng, and Y. Wang, Design of an off-axis near-eye AR display system based on a full-color freeform holographic optical element, Opt. Lett. 48, 1288–1291 (2023).
  • T. Shu, G. Hu, R. Wu, H. Li, Z. Zhang, and X. Liu, Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner, Opt. Express 30, 31714–31727 (2022). doi:10.1364/OE.465842
  • D. Cheng, Q. Wang, L. Wei, X. Wang, L. Zhou, Q. Hou, J. Duan, T. Yang, and Y. Wang, Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide, Appl. Opt 61, 5813–5822 (2022).
  • N. Ruan, F. Shi, Y. Tian, P. Xing, W. Zhang, and S. Qiao, Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis, Opt. Express 31, 33799–33814 (2023). doi:10.1364/OE.498011
  • M.H. Choi, K.S. Shin, J. Jang, W. Han, and J.H. Park, Waveguide-type Maxwellian near-eye display using a pin-mirror holographic optical element array, Opt. Lett. 47, 405–408 (2022).
  • J. Zou, Z. Luo, and S.T. Wu, Pupil steerable Maxwellian AR display with gaze matching, J. Soc. Inf. Disp. 30, 373–380 (2022). doi:10.1002/jsid.1119
  • S. Zhang, Z. Zhang, and J. Liu, Adjustable and continuous eyebox replication for a holographic Maxwellian near-eye display, Opt. Lett. 47, 445–448 (2022).
  • A. Yoshikaie, K. Ohki, Y. Ogawa, A. Funakiri, K. Seno, K. Abe, M. Ando, S. Nakano, and R. Ogawa, 68-1: Invited paper: A waveguide-type retinal scan AR display with pupil expansion system, SID Symp, Dig. Tech. Pap. 54, 962–965 (2023). doi:10.1002/sdtp.16727
  • Y. Zhao, D. Lindberg, B. Cleary, O. Mercier, R. Mcclelland, E. Penner, Y.-J. Lin, J. Majors, and D. Lanman, Retinal-resolution varifocal VR, ACM SIGGRAPH 2023 Emerging Technologies, 1–3 (2023).
  • I. Osmanis, Novel optical architecture of multi focal near-eye display, SPIE, AR, VR, MR Industry Talks 2022, SPIE, 2022, pp. 119321L.
  • T. Sluka, AR needs display revolution, SPIE, AR, VR, MR Industry Talks 2022, SPIE, 2022, pp. 119321P.
  • W. Han, J. Han, Y.G. Ju, J. Jang, and J.H. Park, Super multi-view near-eye display with a lightguide combiner, Opt. Express 30, 46383–46403 (2022). doi:10.1364/OE.477517
  • D. Yoo, S.-W. Nam, Y. Jo, S. Moon, C.-K. Lee, and B. Lee, Learning-based compensation of spatially varying aberrations for holographic display, JOSA A 39, A86–A92 (2022).
  • D. Yang, W. Seo, H. Yu, S.I. Kim, B. Shin, C.K. Lee, S. Moon, J. An, J.Y. Hong, G. Sung, and H.S. Lee, Diffraction-engineered holography: Beyond the depth representation limit of holographic displays, Nat. Commun. 13, 6012 (2022).
  • L. Chen, R. Zhu, and H. Zhang, Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint, Opt. Express 30, 46649–46665 (2022). doi:10.1364/OE.475066
  • Y. Jo, D. Yoo, D. Lee, M. Kim, and B. Lee, Multi-illumination 3D holographic display using a binary mask, Opt. Lett. 47, 2482–2485 (2022).
  • D. Lee, K. Bang, S.W. Nam, B. Lee, D. Kim, and B. Lee, Expanding energy envelope in holographic display via mutually coherent multi-directional illumination, Sci. Rep. 12, 6649 (2022).
  • Y.L. Li, N.N. Li, D. Wang, F. Chu, S.D. Lee, Y.W. Zheng, and Q.H. Wang, Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size, Light Sci. Appl. 11, 188 (2022).
  • H. Yu, Y. Kim, D. Yang, W. Seo, Y. Kim, J.Y. Hong, H. Song, G. Sung, Y. Sung, S.W. Min, and H.S. Lee, Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system, Nat. Commun. 14, 3534 (2023).
  • A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, Towards foveated rendering for gaze-tracked virtual reality, ACM Trans. Graph. 35, 1–12 (2016).
  • G. Tan, Y.H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.T. Wu, Foveated imaging for near-eye displays, Opt. Express 26, 25076–25085 (2018). doi:10.1364/OE.26.025076
  • J. Lee, and Y.H. Won, Achromatic doublet electrowetting prism array for beam steering device in foveated display, Opt. Express 30, 2078–2088 (2022). doi:10.1364/OE.448262
  • P. Lyu, and H. Hua, Design of a statically foveated display based on a perceptual-driven approach, Opt. Express 31, 2088–2101 (2023). doi:10.1364/OE.480900
  • M. Meta, Quest 3, https://www.meta.com/quest/quest-3/.
  • Apple, Apple vision pro, https://www.apple.com/apple-vision-pro/.
  • N. Matsuda, B. Wheelwright, J. Hegland, and D. Lanman, Reverse pass-through VR, ACM SIGGRAPH 2021 Emerging technologies, Association for Computing Machinery, Virtual Event, USA, article 13.
  • J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D.Y. Yoon, K. Char, S. Lee, and C. Lee, Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure, Nano Lett. 12, 2362–2366 (2012). doi:10.1021/nl3003254
  • X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature 515, 96–99 (2014). doi:10.1038/nature13829
  • W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, Highly stable QLEDs with improved hole injection via quantum dot structure tailoring, Nat. Commun. 9, 2608 (2018).
  • Q. Su, Y. Sun, H. Zhang, and S. Chen, Origin of positive aging in quantum-dot light-emitting diodes, Adv. Sci. (Weinh) 5, 1800549 (2018).
  • H. Moon, and H. Chae, Efficiency enhancement of all-solution-processed inverted-structure green quantum dot light-emitting diodes via partial ligand exchange with thiophenol derivatives having negative dipole moment, Adv. Opt. Mater. 8, 1901314 (2020). doi:10.1002/adom.201901314
  • J. Song, O. Wang, H. Shen, Q. Lin, Z. Li, L. Wang, X. Zhang, and L.S. Li, Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer, Adv. Funct. Mater. 29, 1808377 (2019). doi:10.1002/adfm.201808377
  • J.R. Manders, L. Qian, A. Titov, J. Hyvonen, J. Tokarz-Scott, K.P. Acharya, Y. Yang, W. Cao, Y. Zheng, J. Xue, and P.H. Holloway, High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays, J. Soc. Inf. Disp. 23, 523–528 (2015). doi:10.1002/jsid.393
  • Z. Li, Y. Hu, H. Shen, Q. Lin, L. Wang, H. Wang, W. Zhao, and L.S. Li, Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots, Laser Photon. Rev. 11, 1600227 (2017).
  • X. Li, Y.B. Zhao, F. Fan, L. Levina, M. Liu, R.Q. Quintero-Bermudez, X. Gong, L.N. Quan, J.Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.H. Lu, and E.H. Sargent, Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination, Nat. Photonics 12, 159–164 (2018). doi:10.1038/s41566-018-0105-8
  • Z. Yang, Q. Wu, G. Lin, X. Zhou, W. Wu, X. Yang, J. Zhang, and W. Li, All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime, Mater. Horiz. 6, 2009–2015 (2019).
  • Y. Sun, Q. Su, H. Zhang, F. Wang, S. Zhang, and S. Chen, Investigation on thermally induced efficiency Roll-Off: Toward efficient and ultrabright quantum-dot light-emitting diodes, ACS Nano 13, 11433–11442 (2019). doi:10.1021/acsnano.9b04879
  • H. Shen, W. Cao, N.T. Shewmon, C. Yang, L.S. Li, and J. Xue, High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes, Nano Lett. 15, 1211–1216 (2015). doi:10.1021/nl504328f
  • L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu, Blue quantum dot light-emitting diodes with high electroluminescent efficiency, ACS Appl. Mater. Interfaces 9, 38755–38760 (2017). doi:10.1021/acsami.7b10785
  • Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L.S. Li, Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process, ACS Photonics 5, 939–946 (2018). doi:10.1021/acsphotonics.7b01195
  • D. Li, J. Bai, T. Zhang, C. Chang, X. Jin, Z. Huang, B. Xu, and Q. Li, Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance, Chem. Commun. (Camb) 55, 3501–3504 (2019). doi:10.1039/C9CC00230H
  • S.H. Kim, G.W. Baek, J. Yoon, S. Seo, D. Hahm, J.H. Chang, D. Seong, H. Seo, S. Oh, K. Kim, H. Jung, Y. Oh, H.W. Baac, B. Alimkhanuly, W.K. Bae, S. Lee, J. Kwak, J.-H. Park, and D. Son, A bioinspired stretchable sensory-neuromorphic system, Adv. Mater. 33, 2104690 (2021).
  • H. Liu, J. Zou, X. Zhu, X. Li, H. Ni, Y. Liu, H. Tao, M. Xu, L. Wang, and J. Peng, Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots, Org. Electron. 99, 106344 (2021).
  • Y. Zhang, Z. Li, F. Wang, Q. Lin, and M. Zhao, To improve the performance of green light-emitting devices by enhancing hole injection efficiency, Chem. Eng. J. Adv. 5, 100082 (2021).
  • G. Ba, Q. Xu, X. Li, Q. Lin, H. Shen, and Z. Du, Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering, Opt. Express 29, 12169–12178 (2021). doi:10.1364/OE.421029
  • B. Zhao, L. Chen, W. Liu, L. Wu, Z. Lu, and W. Cao, High efficiency blue light-emitting devices based on quantum dots with core-shell structure design and surface modification, RSC Adv 11, 14047–14052 (2021). doi:10.1039/D0RA10173G
  • T. Lee, B.J. Kim, H. Lee, D. Hahm, W.K. Bae, J. Lim, and J. Kwak, Bright and stable quantum dot light-emitting diodes, Adv. Mater. 34, 2106276 (2022).
  • J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, H. Yang, and H.-E. Red, Electroluminescent device based on multishelled InP quantum dots, Opt. Lett. 41, 3984-3987 (2016). doi:10.1364/OL.41.003984
  • F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS Core–shell quantum dots enabling high-efficiency light-emitting diodes, Chem. Mater. 30, 8002–8007 (2018).
  • T. Lee, D. Hahm, K. Kim, W.K. Bae, C. Lee, and J. Kwak, Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer, Small 15, 1905162 (2019). doi:10.1002/smll.201905162
  • Y. Li, X. Hou, X Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, Stoichiometry-controlled InP-based quantum Dots: Synthesis, photoluminescence, and electroluminescence, J. Am. Chem. Soc. 141, 6448-6452 (2019). doi:10.1021/jacs.8b12908
  • Y.H. Won, O. Cho, T. Kim, D.Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, and E. Jang, Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes, Nature 575, 634–638 (2019). doi:10.1038/s41586-019-1771-5
  • H.C. Wang, H. Zhang, H.Y. Chen, H.C. Yeh, M.R. Tseng, R.J. Chung, S. Chen, and R.S. Liu, Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO Electron Transport Layer and a Brightness of over 10 000 cd m-2, Small 13, 1603962 (2017). doi:10.1002/smll.201603962
  • Y. Kim, B. Heyne, A. Geßner, Y. Park, M. Kang, S. Ahn, B. Lee, and A. Wedel, P-110: Efficient InP-based quantum Dot light-emittingdDiodes utilizing a Crosslinkable Hole Transport Layer, SID Int. Symp. Dig. Tech. Pap. 49, 1625–1628 (2018). doi:10.1002/sdtp.12293
  • H. Li, S. Zhou, and S. Chen, Highly efficient top-emitting quantum-dot light-emitting diodes with record-breaking external quantum efficiency of over 44.5%, Laser Photonics Rev. 17, 2300371 (2023). doi:10.1002/lpor.202300371
  • Y. Deng, F. Peng, Y. Lu, X. Zhu, W. Jin, J. Qiu, J. Dong, Y. Hao, D. Di, Y. Gao, T. Sun, M. Zhang, F. Liu, L. Wang, L. Ying, F. Huang, and Y. Jin, Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage, Nat. Photonics 16, 505–511 (2022). doi:10.1038/s41566-022-00999-9
  • L. Shi, and S. Chen, Over 32.5% efficient top-emitting quantum-dot LEDs with angular-independent emission, ACS Appl. Mater. Interfaces 14, 30039–30045 (2022). doi:10.1021/acsami.2c06670
  • Y. Gao, B. Li, X. Liu, H. Shen, Y. Song, J. Song, Z. Yan, X. Yan, Y. Chong, R. Yao, S. Wang, L.S. Li, F. Fan, and Z. Du, Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting, Nat. Nanotechnol. 18, 1168–1174 (2023).
  • G.W. Baek, S.G. Seo, D. Hahm, Y.J. Kim, K. Kim, T. Lee, J. Kim, W.K. Bae, S.H. Jin, and J. Kwak, Optimum design configuration of thin-film transistors and quantum-dot light-emitting diodes for active-matrix displays, Adv. Mater. 35, e2304717 (2023).
  • X. Fan, Z. Mu, Z. Chen, Y. Zhan, F. Meng, Y. Li, G. Xing, and W.-Y. Wong, An efficient green-emitting quantum dot with near-unity quantum yield and suppressed Auger recombination for high-performance light-emitting diodes, Chem. Eng. J. 461, 142027 (2023). doi:10.1016/j.cej.2023.142027
  • X. Chen, X. Lin, L. Zhou, X. Sun, R. Li, M. Chen, Y. Yang, W. Hou, L. Wu, W. Cao, X. Zhang, X. Yan, and S. Chen, Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling, Nat. Commun. 14, 284 (2023).
  • H. Li, Y. Bian, W. Zhang, Z. Wu, T.K. Ahn, H. Shen, and Z. Du, High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization, Adv. Funct. Mater. 32, 2204529 (2022). doi:10.1002/adfm.202204529
  • W.-C. Chao, T.-H. Chiang, Y.-C. Liu, Z.-X. Huang, C.-C. Liao, C.-H. Chu, C.-H. Wang, H.-W. Tseng, W.-Y. Hung, and P.-T. Chou, High efficiency green In P quantum dot light-emitting diodes by balancing electron and hole mobility, Commun. Mater. 2, 96 (2021).
  • Y. Bi, S. Cao, P. Yu, Z. Du, Y. Wang, J. Zheng, B. Zou, and J. Zhao, Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes, Small 19, e2303247 (2023). doi:10.1002/smll.202303247
  • Y. Dou, L. Wang, Y. Wang, Q. Wu, F. Cao, S. Wang, Q. Huang, Y. Ma, and X. Yang, Coordinating solvent synthesis of InP quantum dots with large sizes and suppressed defects for yellow light-emitting diodes, Adv. Opt. Mater. 11, 2300133 (2023). doi:10.1002/adom.202300133
  • T. Zhang, P. Liu, F. Zhao, Y. Tan, J. Sun, X. Xiao, Z. Wang, Q. Wang, F. Zheng, X. W. Sun, D. Wu, G. Xing, and K. Wang, Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection Nanoscale Adv. 5, 385-392 (2023).
  • C.-Y. Han, S.-H. Lee, S.-W. Song, S.-Y. Yoon, J.-H. Jo, D.-Y. Jo, H.-M. Kim, B.-J. Lee, H.-S. Kim, H. Yang, and T. More, More Than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices, ACS Energy Lett. 5, 1568-1576 (2020). doi:10.1021/acsenergylett.0c00638
  • T. Kim, K.H. Kim, S. Kim, S.M. Choi, H. Jang, H.K. Seo, H. Lee, D.Y. Chung, and E. Jang, Efficient and stable blue quantum dot light-emitting diode, Nature 586, 385–389 (2020). doi:10.1038/s41586-020-2791-x
  • H. Roh, D. Ko, D.Y. Shin, J.H. Chang, D. Hahm, W.K. Bae, C. Lee, J.Y. Kim, and J. Kwak, Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot–polymer composites, Adv. Opt. Mater. 9, 2002129 (2021). doi:10.1002/adom.202002129
  • P. Yang, L. Zhang, D.J. Kang, R. Strahl, and T. Kraus, High-resolution inkjet printing of quantum dot light-emitting microdiode arrays, Adv. Opt. Mater. 8, 1901429 (2020). doi:10.1002/adom.201901429
  • C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices, ACS Appl. Mater. Interfaces 8, 26162–26168 (2016). doi:10.1021/acsami.6b08679
  • S. Jia, H. Tang, J. Ma, S. Ding, X. Qu, B. Xu, Z. Wu, G. Li, P. Liu, K. Wang, and X.W. Sun, High performance inkjet-printed quantum-dot light-emitting diodes with high operational stability, Adv. Opt. Mater. 9, 2101069 (2021). doi:10.1002/adom.202101069
  • L. Xie, J. Yang, W. Zhao, Y. Yi, Y. Liu, W. Su, Q. Li, W. Lei, and Z. Cui, High-performance inkjet-printed blue QLED enabled by crosslinked and intertwined hole transport layer, Adv. Opt. Mater. 10, 2200935 (2022). doi:10.1002/adom.202200935
  • M. Chen, L. Xie, C. Wei, Y.-Q.-Q. Yi, X. Chen, J. Yang, J. Zhuang, F. Li, W. Su, and Z. Cui, High performance inkjet-printed QLEDs with 18.3% EQE: Improving interfacial contact by novel halogen-free binary solvent system, Nano Res. 14, 4125–4131 (2021). doi:10.1007/s12274-021-3352-9
  • J. Bai, H. Hu, Y. Yu, Y. Zhu, Z. Xu, W. Zheng, H. Zhao, K. Yang, L. Lin, T. Guo, and F. Li, Achieving high performance InP quantum dot light-emitting devices by using inkjet printing, Org. Electron. 113, 10.6705 (2023).
  • L. Xie, Q. Li, Y. Yi, G. Qiu, O.E. Fayemi, X. Mu, Z. Ma, P. Tang, Y. Liu, W. Su, W. Lei, and Z. Cui, High-performance inkjet-printed inverted QD-LEDs based on cross-linkable electron regulation layers, Chem. Eng. J. 477, 146789 (2023). doi:10.1016/j.cej.2023.146789
  • Y.J. Han, D.Y. Kim, K. An, K.T. Kang, B.K. Ju, and K.H. Cho, Sequential improvement from cosolvents ink formulation to vacuum annealing for ink-jet printed quantum-dot light-emitting diodes, Materials 13, 4754 (2020). doi:10.3390/ma13214754
  • J. Yang, M. Lee, S.Y. Park, M. Park, J. Kim, N. Sitapure, D. Hahm, S. Rhee, D. Lee, H. Jo, Y.H. Jo, J. Lim, J. Kim, T.J. Shin, D.C. Lee, K. Kwak, J.S. Kwon, B. Kim, W.K. Bae, and M.S. Kang, Nondestructive photopatterning of heavy-metal-free quantum dots, Adv. Mater. 34, e2205504 (2022).
  • D. Hahm, J. Lim, H. Kim, J.W. Shin, S. Hwang, S. Rhee, J.H. Chang, J. Yang, C.H. Lim, H. Jo, B. Choi, N.S. Cho, Y.S. Park, D.C. Lee, E. Hwang, S. Chung, C.M. Kang, M.S. Kang, and W.K. Bae, Direct patterning of colloidal quantum dots with adaptable dual-ligand surface, Nat. Nanotechnol. 17, 952–958 (2022).
  • J. Yang, D. Hahm, K. Kim, S. Rhee, M. Lee, S. Kim, J.H. Chang, H.W. Park, J. Lim, M. Lee, H. Kim, J. Bang, H. Ahn, J.H. Cho, J. Kwak, B. Kim, C. Lee, W.K. Bae, and M.S. Kang, High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking, Nat. Commun. 11, 2874 (2020).
  • H. Cho, J.A. Pan, H. Wu, X. Lan, I. Coropceanu, Y. Wang, W. Cho, E.A. Hill, J.S. Anderson, and D.V. Talapin, Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange, Adv. Mater. 32, e2003805 (2020).
  • Y. Wang, X. Shan, Y. Tang, T. Liu, B. Li, P. Jin, K. Liang, D. Li, Y.M. Yang, H. Shen, B. Zhu, and B. Ji, Direct optical patterning of nanocrystal-based thin-film transistors and light-emitting diodes through native ligand cleavage, ACS Appl. Nano Mater. 5, 8457–8466 (2022).
  • J. Lee, J. Ha, H. Lee, H. Cho, D.C. Lee, D.V. Talapin, and H. Cho, Direct optical lithography of colloidal InP-Based Quantum Dots with Ligand Pair Treatment. ACS Energy Lett. 8, 4210–4217 (2023). doi:10.1021/acsenergylett.3c01019
  • Y. Wang, J.A. Pan, H. Wu, and D.V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials, ACS Nano 13, 13917–13931 (2019). doi:10.1021/acsnano.9b05491
  • J. Ko, J.H. Chang, B.G. Jeong, H.J. Kim, J.F. Joung, S. Park, D.H. Choi, W.K. Bae, and J. Bang, Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands, ACS Appl. Mater. Interfaces 12, 42153–42160 (2020). doi:10.1021/acsami.0c11988
  • G. Meng, D. Zhang, J. Wei, Y. Zhang, T. Huang, Z. Liu, C. Yin, X. Hong, X. Wang, X. Zeng, D. Yang, D. Ma, G. Li, and L. Duan, Highly efficient and stable deep-blue OLEDs based on narrowband emitters featuring an orthogonal spiro-configured indolo[3,2,1-de]acridine structure, Chem. Sci. 13, 5622–5630 (2022).
  • J. Park, K.J. Kim, J. Lim, T. Kim, and J.Y. Lee, High efficiency of over 25% and long device lifetime of over 500 h at 1000 nit in blue fluorescent organic light-emitting diodes, Adv. Mater 34, e2108581 (2022).
  • S. Hyun Lee, M. Young Chae, Y. Hun Jung, J. Hyeog Oh, H. Rin Kim, K.R. Naveen, and J.H. Kwon, Enhanced triplet-triplet fusion for high efficiency and long lifetime of multiresonant pure blue organic light emitting diodes, J. Ind. Eng. Chem. 122, 452–458 (2023). doi:10.1016/j.jiec.2023.03.005
  • C. Cheng, Y. Zhu, T. Tsuboi, C. Deng, W. Lou, T. Liu, D. Wang, and Q. Zhang, Extremely stable deep-blue organic light-emitting diodes employing diindolophenazine-based fluorophore with narrow-band emission and a shallow LUMO level, Chem. Eng. J 474, 145691 (2023). doi:10.1016/j.cej.2023.145691
  • Y. Zou, J. Hu, M. Yu, J. Miao, Z. Xie, Y. Qiu, X. Cao, and C. Yang, High-performance narrowband pure-red OLEDs with external quantum efficiencies up to 36.1% and ultralow efficiency roll-off, Adv. Mater 34, e2201442 (2022).
  • J. Wang, N. Li, C. Zhong, J. Miao, Z. Huang, M. Yu, Y.X. Hu, S. Luo, Y. Zou, and K. Li, Metal-perturbed multiresonance TADF emitter enables high-efficiency and ultralow efficiency Roll-Off nonsensitized OLEDs with pure green gamut, Adv. Mater 35, 2208378 (2023).
  • Y. Hu, J. Miao, C. Zhong, Y. Zeng, S. Gong, X. Cao, X. Zhou, Y. Gu, and C. Yang, Peripherally heavy-atom-decorated strategy towards high-performance pure green electroluminescence with external quantum efficiency over 40%, Angew. Chem. Int Ed. Engl. 62, e202302478 (2023). doi:10.1002/anie.202302478
  • X. Cai, Y. Pu, C. Li, Z. Wang, and Y. Wang, Multi-resonance building-block-based electroluminescent material: Lengthening emission maximum and shortening delayed fluorescence lifetime, Angew. Chem. Int. Ed. Engl. 62, e202304104 (2023). doi:10.1002/anie.202304104
  • Q. Wang, Y. Xu, T. Huang, Y. Qu, J. Xue, B. Liang, and Y. Wang, Precise regulation of emission maxima and construction of highly efficient electroluminescent materials with high color purity, Angew. Chem. Int. Ed. Engl. 62, e202301930 (2023). doi:10.1002/anie.202301930
  • X.-C. Fan, K. Wang, Y.-Z. Shi, Y.-C. Cheng, Y.-T. Lee, J. Yu, X.-K. Chen, C. Adachi, and X.-H. Zhang, UltraPure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design, Nat. Photonics 17, 280–285 (2023). doi:10.1038/s41566-022-01106-8
  • J. Bian, S. Chen, L. Qiu, R. Tian, Y. Man, Y. Wang, S. Chen, J. Zhang, C. Duan, and C. Han, Ambipolar self-host functionalization accelerates blue multi-resonance thermally activated delayed fluorescence with internal quantum efficiency of 100%, Adv. Mater. 34, 2110547 (2022).
  • K. Rayappa Naveen, H. Lee, R. Braveenth, K. Joon Yang, S. Jae Hwang, and J. Hyuk Kwon, Deep blue diboron embedded multi-resonance thermally activated delayed fluorescence emitters for narrowband organic light emitting diodes, Chem. Eng. J. 432, 134381 (2022). doi:10.1016/j.cej.2021.134381
  • K. R. Naveen, H. Lee, L. H. Seung, Y. H. Jung, C. P. Keshavananda Prabhu, S. Muruganantham, and J. H. Kwon, Modular design for constructing narrowband deep-blue multiresonant thermally activated delayed fluorescent emitters for efficient organic light emitting diodes, Chem. Eng. J. 451, 138498 (2023). doi:10.1016/j.cej.2022.138498
  • H.L. Lee, S.O. Jeon, I. Kim, S.C. Kim, J. Lim, J. Kim, S. Park, J. Chwae, W.J. Son, and H. Choi, Multiple-resonance extension and spin-vibronic-coupling-based narrowband blue organic fluorescence emitters with over 30% quantum efficiency, Adv. Mater 34, 2202464 (2022).
  • H.L. Lee, J. Kang, J. Lim, S.C. Kim, S.O. Jeon, and J.Y. Lee, Hybridization of short-range and long-range charge transfer excited states in multiple resonance emitter, Nat. Commun 14, 4818 (2023).
  • T. Fan, M. Du, X. Jia, L. Wang, Z. Yin, Y. Shu, Y. Zhang, J. Wei, D. Zhang, and L. Duan, High-efficiency narrowband multi-resonance emitter fusing indolocarbazole donors for BT. 2020 red electroluminescence and ultra-long operation lifetime, Adv. Mater 35, 2301018 (2023).
  • Y. Zhang, G. Li, L. Wang, T. Huang, J. Wei, G. Meng, X. Wang, X. Zeng, D. Zhang, and L. Duan, Fusion of multi-resonance fragment with conventional polycyclic aromatic hydrocarbon for nearly BT, Angew. Chem. Int. Ed. 61, e202202380 (2022).
  • X. Lv, J. Miao, M. Liu, Q. Peng, C. Zhong, Y. Hu, X. Cao, H. Wu, Y. Yang, and C. Zhou, Extending the π-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission, Angew. Chem. 134, e202201588 (2022).
  • E. Kim, J. Park, M. Jun, H. Shin, J. Baek, T. Kim, S. Kim, J. Lee, H. Ahn, J. Sun, S.B. Ko, S.H. Hwang, J.Y. Lee, C. Chu, and S. Kim, Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence, Sci. Adv. 8, eabq1641 (2022).
  • J. Sun, H. Ahn, S. Kang, S.-B. Ko, D. Song, H.A. Um, S. Kim, Y. Lee, P. Jeon, and S.-H. Hwang, Exceptionally stable blue phosphorescent organic light-emitting diodes, Nat. Photonics 16, 212–218 (2022). doi:10.1038/s41566-022-00958-4
  • C.H. Ryu, S.C. Kim, M. Kim, S. Yi, J.Y. Lee, K.M. Lee, and N. Tetradentate, Platinum(II) complexes and their use in blue phosphorescent organic light-emitting diodes, Adv. Opt. Mater. 10, 2201799 (2022).