8,782
Views
30
CrossRef citations to date
0
Altmetric
Articles

A short review of numerical cloud-resolving models

&
Article: 1373578 | Received 10 Jan 2017, Accepted 02 Aug 2017, Published online: 19 Sep 2017

References

  • Abma, D., Heus, T. and Mellado, J. P. 2013. Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds. J. Atmos. Sci. 70, 2088–2102.10.1175/JAS-D-12-0230.1
  • Albrecht, B. A., Bretherton, C. S., Johnson, D., Scubert, W. H. and Frisch, A. S. 1995. The Atlantic Stratocumulus Transition Experiment – ASTEX. Bull. Amer. Meteorol. Soc. 76, 889–904.10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2
  • Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674–701.10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
  • Arakawa, A. and Konor, C. S. 2009. Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Wea. Rev. 137, 710–726.10.1175/2008MWR2520.1
  • Asa, T. and Nakamura, K. 1978. A numerical experiment of airmass transformation processes over warmer sea. Part I: Development of a convectively mixed layer. J. Meteorol. Soc. Japan 56, 424–434.10.2151/jmsj1965.56.5_424
  • Atkinson, B. W. and Zhang, J. W. 1996. Mesoscale shallow convection in the atmosphere. Rev. Geophys. 34, 403–431.10.1029/96RG02623
  • Baba, Y. and Takahashi, K. 2013. Weighted essentially non-oscillatory scheme for cloud edge problem. Q.J.R. Meteorol. Soc. 139, 1374–1388.10.1002/qj.v139.674
  • Bannon, P. R. 1996. On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53, 3618–3628.10.1175/1520-0469(1996)053<3618:OTAAFA>2.0.CO;2
  • Barnes, G. M. and Garstang, M. 1982. Subcloud layer energetics of precipitating convection. Mon. Wea. Rev. 110, 102–117.10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2
  • Basu, S. and Porté-Agel, F. 2006. Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J. Atmos. Sci. 63, 2074–2091.10.1175/JAS3734.1
  • Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M. and co-authors. 2008. Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q.J.R. Meteorol. Soc. 134, 1337–1351.10.1002/qj.v134:634
  • Birch, C. E., Parker, D. J., Marsham, J. H., Copsey, D. and Garcia-Carreras, L. 2014. A seamless assessment of the role of convection in the water cycle of the West African Monsoon. J. Geophys. Res. 119, 2890–2912.
  • Blossey, P. N., Bretherton, C. S., Zhang, M., Cheng, A., Endo, S. and co-authors. 2013. Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst. 5, 234–258.10.1002/jame.20025
  • Bogenschutz, P. A., Krueger, S. K. and Khairoutdinov, M. 2010. Assumed probability density functions for shallow and deep convection. J. Adv. Model. Earth Syst. 2, 10.
  • Böing, S. J., Jonker, H. J., Siebesma, A. P. and Grabowski, W. W. 2012. Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci. 69, 2682–2698.10.1175/JAS-D-11-0317.1
  • Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S. and co-authors. 2006. How well do we understand and evaluate climate change feedback processes? J. Climate. 19, 3445–3482.
  • Bougeault, P. 1981. Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data. J. Atmos. Sci. 38, 2414–2428.10.1175/1520-0469(1981)038<2414:MTTWCB>2.0.CO;2
  • Bougeault, P. and Lacarrere, P. 1989. Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev. 117, 1872–1890.10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
  • Bretherton, C. S., Blossey, P. N. and Jones, C. R. 2013. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst. 5, 316–337.10.1002/jame.20019
  • Brient, F. and Bony, S. 2012. How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming? Geophys. Res. Lett. 39, L20807.
  • Brient, F. and Bony, S. 2013. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim. Dyn. 40, 2415–2431.10.1007/s00382-011-1279-7
  • Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G. and co-authors. 2002. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q.J.R. Meteorol. Soc. 128, 1075–1093.10.1256/003590002320373210
  • Brown, P. R. A. and Swann, H. A. 1997. Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data. Q.J.R. Meteorol. Soc. 123, 2245–2275.10.1002/qj.v123:544
  • Browning, K. and The GEWEX Cloud System Science Team. 1993. The GEWEX cloud system study (GCSS). Bull. Amer. Meteorol. Soc. 74, 387–399.
  • Brümmer, B. 1999. Roll and cell convection in wintertime arctic cold-air outbreaks. J. Atmos. Sci. 56, 2613–2636.10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2
  • Bryan, G. H., Wyngaard, J. C. and Fritsch, J. M. 2003. Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev. 131, 2394–2416.10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2
  • Carpenter, K. M. 1982. Note on the paper ‘Radiation conditions for lateral boundaries of limited area numerical models’. Q.J.R. Meteorol. Soc. 108, 717–719.10.1002/(ISSN)1477-870X
  • Ceppi, P., Brient, F., Zelinka, M. D. and Hartmann, D. L. in press. Cloud feedback mechanisms and their representation in global climate models. WIREs Clim. Change 8, e465.
  • Chaboureau, J.-P., Guichard, F., Redelsperger, J.-L. and Lafore, J.-P. 2004. The role of stability and moisture in the diurnal cycle of convection over land. Q.J.R. Meteorol. Soc. 130, 3105–3117.10.1256/qj.03.132
  • Clark, T. L. 1977. A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput. Phys. 24, 186–215.10.1016/0021-9991(77)90057-2
  • Clark, T. L., Hauf, T. and Kuettner, J. P. 1986. Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Q.J.R. Meteorol. Soc. 112, 899–925.10.1002/(ISSN)1477-870X
  • Chung, D. and Matheou, G. 2014. Large-eddy simulation of stratified turbulence. part i: a vortex-based subgrid-scale model. J. Atmos. Sci. 71, 1863–1879.10.1175/JAS-D-13-0126.1
  • Cohen, B. G. and Craig, G. C. 2004. The response time of a convective cloud ensemble to a change in forcing. Q.J.R. Meteorol. Soc. 130, 933–944.10.1256/qj.02.218
  • Corbetta, G., Orlandi, E., Heus, T., Neggers, R. and Crewell, S. 2015. Overlap statistics of shallow boundary layer clouds: Comparing ground-based observations with large-eddy simulations. Geophys. Res. Lett. 42, 8185–8191.10.1002/2015GL065140
  • Cotton, W. R., Bryan, G. and Van den Heever, S. C. 2010. Storm and Cloud Dynamics. 2nd ed., Vol. 99. Academic Press, New York, NY.
  • Couvreux, F., Guichard, F., Masson, V. and Redelsperger, J. L. 2007. Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis. Bound-Layer Meteorol. 123, 269–294.10.1007/s10546-006-9140-y
  • Couvreux, F., Hourdin, F. and Rio, C. 2010. Resolved versus parametrized boundary-layer plumes. Part I: A parametrization-oriented conditional sampling in large-eddy simulations. Bound-Layer Meteorol. 134, 441–458.10.1007/s10546-009-9456-5
  • Couvreux, F., Roehrig, R., Rio, C., Lefebvre, M.-P., Caian, M. and co-authors. 2015. Representation of daytime moist convection over the semi-arid Tropics by parametrizations used in climate and meteorological models. Q.J.R. Meteorol. Soc. 141, 2220–2236.10.1002/qj.2517
  • Daleu, C. L., Plant, R. S., Woolnough, S. J., Sessions, S., Herman, M. J. and co-authors. 2015. Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions. J. Adv. Model. Earth Syst. 7, 1576–1601.10.1002/jame.v7.4
  • Dauhut, T., Chaboureau, J.-P., Escobar, J. and Mascart, P. 2015. Large-eddy simulations of Hector the convector making the stratosphere wetter. Atmos. Sci. Lett. 16, 135–140.10.1002/asl2.2015.16.issue-2
  • Deardorff, J. W. 1970. A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys. Fluid Dyn. 1, 377–410.
  • Deardorff, J. W. 1972. Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev. 100, 93–106.10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
  • Deardorff, J. W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound-Layer Meteorol. 18, 495–527.10.1007/BF00119502
  • Del Genio, A. D., Wu, J., Wolf, A. B., Chen, Y., Yao, M. S. and co-authors. 2015. Constraints on cumulus parameterization from simulations of observed MJO events. J. Climate 28, 6419–6442.10.1175/JCLI-D-14-00832.1
  • de Rooy, W. C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H. and co-authors. 2013. Entrainment and detrainment in cumulus convection: an overview. Q.J.R. Meteorol. Soc. 139, 1–19.10.1002/qj.1959
  • de Roode, S. R., Siebesma, A. P., Jonker, H. J. J. and de Voogd, Y. 2012. Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Weather Rev. 140, 2424–2436.10.1175/MWR-D-11-00277.1
  • de Roode, S. R., Sandu, I., van der Dussen, J. J., Ackerman, A. S., Blossey, P. and co-authors. 2016. Large-eddy simulations of EUCLIPSE–GASS Lagrangian stratocumulus-to-cumulus transitions: mean state, turbulence, and decoupling. J. Atmos. Sci. 73, 2485–2508.10.1175/JAS-D-15-0215.1
  • de Szoeke, S. P., Skyllingstad, E. D., Zuidema, P. and Chandra, A. S. 2017. Cold Pools and their influence on the tropical marine boundary layer. J. Atmos. Sci. 74, 1149–1168.10.1175/JAS-D-16-0264.1
  • Dione, C., Lothon, M., Badiane, D., Campistron, B., Couvreux, F. and co-authors. 2014. Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Q.J.R. Meteorol. Soc. 140, 500–516.10.1002/qj.v140.679
  • Durran, D. R. 1989. Improving the anelastic approximation. J. Atmos. Sci. 46, 1453–1461.10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
  • Durran, D. R. and Klemp, J. B. 1983. A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev. 111, 2341–2361.10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2
  • Ebert, E. E. and Curry, J. A. 1992. A parameterization of ice cloud optical properties for climate models. J. Geophys. Res. 97, 3831–3836.10.1029/91JD02472
  • Emori, S. and Brown, S. J. 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 32, L17706.
  • Esau, I. 2014. Indirect air–sea interactions simulated with a coupled turbulence-resolving model. Ocean Dyn. 64, 689–705.10.1007/s10236-014-0712-y
  • Feng, Z., Hagos, S., Rowe, A. K., Burleyson, C. D., Martini, M. N. and co-authors. 2015. Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst. 7, 357–381.10.1002/2014MS000384
  • Feingold, G., Koren, I., Wang, H. L., Xue, H. W. and Brewer, W. A. 2010. Precipitation-generated oscillations in open cellular cloud fields. Nature 466, 849–852.10.1038/nature09314
  • Froidevaux, P., Schlemmer, L., Schmidli, J., Langhans, W. and Schär, C. 2014. Influence of the background wind on the local soil moisture–precipitation feedback. J. Atmos. Sci. 71, 782–799.10.1175/JAS-D-13-0180.1
  • Fu, Q. 1996. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate. 9, 2058–2082.10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2
  • Fu, Q., Yang, P. and Sun, W. B. 1998. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate 11, 2223–2237.10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2
  • Etling, D. and Brown, R. A. 1993. Roll vortices in the planetary boundary layer: A review. Bound-Layer Meteorol. 65, 215–248.10.1007/BF00705527
  • Gal-Chen, T. and Somerville, R. C. J. 1975. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys. 17, 209–228.10.1016/0021-9991(75)90037-6
  • Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765.
  • Golaz, J. C., Larson, V. E. and Cotton, W. R. 2002. A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci. 59, 3540–3551.
  • Grabowski, W. W., Wu, X. and Moncrieff, M. W. 1996. Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: two-dimensional experiments. J. Atmos. Sci. 53, 3684–3709.10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2
  • Grabowski, W. W., Wu, X., Moncrieff, M. W. and Hall, W. D. 1998. Cloud-resolving modeling of cloud systems during phase III of GATE. Part II: effects of resolution and the third spatial dimension. J. Atmos. Sci. 55, 3264–3282.10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2
  • Grabowski, W. W. 2001. Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 58, 978–997.10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2
  • Grabowski, W. W. 2003. MJO-like coherent structures: sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 60, 847–864.10.1175/1520-0469(2003)060<0847:MLCSSS>2.0.CO;2
  • Grabowski, W. W. 2016. Towards global large eddy simulation: super-parameterization revisited. J. Meteorol. Soc. Japan. 94, 327–344.10.2151/jmsj.2016-017
  • Grandpeix, J. Y. and Lafore, J. P. 2010. A density current parameterization coupled with emanuel’s convection scheme. Part I: the models. J. Atmos. Sci. 67, 881–897.10.1175/2009JAS3044.1
  • Gregory, D. and Miller, M. J. 1989. A numerical study of the parametrization of deep tropical convection. Q.J.R. Meteorol. Soc. 115, 1209–1241.10.1002/(ISSN)1477-870X
  • Gregory, D. 2001. Estimation of entrainment rate in simple models of convective clouds. Q.J.R. Meteorol. Soc. 127, 53–72.10.1002/(ISSN)1477-870X
  • Gregory, D. and Guichard, F. 2002. Aspects of the parametrization of organized convection: contrasting cloud-resolving model and single-column model realizations. Q.J.R. Meteorol. Soc. 128, 625–646.10.1256/003590002321042126
  • Griffin, B. M. and Larson, V. E. 2016. Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS). Geosci. Model Dev. 9, 4273–4295.10.5194/gmd-9-4273-2016
  • Guichard, F. 1995. Impact of a cloud ensemble on the large scale environment as obtained with a cloud resolving model (cases GATE and TOGA-COARE). PhD Thesis. Institut National Polytechnique de Toulouse, Toulouse, France. Thesis No. 1995INPT034H.
  • Guichard, F., Lafore, J.-P. and Redelsperger, J.-L. 1997. Thermodynamical impact and internal structure of a tropical convective cloud system. Q.J.R. Meteorol. Soc. 123, 2297–2324.10.1002/qj.v123:544
  • Guichard, F., Redelsperger, J.-L. and Lafore, J.-R. 2000. Cloud-resolving simulation of convective activity during TOGA-COARE: sensitivity to external sources of uncertainties. Q.J.R. Meteorol. Soc. 126, 3067–3095.10.1002/(ISSN)1477-870X
  • Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau, J.-P. and co-authors. 2004. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q.J.R. Meteorol. Soc. 130, 3139–3172.10.1256/qj.03.145
  • Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O. and co-authors. 2017. Large-eddy simulations over Germany using ICON: a comprehensive evaluation. Q.J.R. Meteorol. Soc. 143, 69–100.10.1002/qj.2017.143.issue-702
  • Held, I. M., Hemler, R. S. and Ramaswamy, V. 1993. Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci. 50, 3909–3927.10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2
  • Heus, T., van Dijk, G., Jonker, H. J. J. and van den Akker, H. E. A. 2008. Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci. 65, 2581–2597.10.1175/2008JAS2572.1
  • Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S. and co-authors. 2010. Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev. 3, 415–444.10.5194/gmd-3-415-2010
  • Holloway, C. E., Woolnough, S. J. and Lister, G. M. 2013. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci. 70, 1342–1369.10.1175/JAS-D-12-0227.1
  • Hong, S.-Y. and Pan, H.-L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev. 124, 2322–2339.10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  • Honnert, R., Masson, V. and Couvreux, F. 2011. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci. 68, 3112–3131.10.1175/JAS-D-11-061.1
  • Hourdin, F., Couvreux, F. and Menut, L. 2002. Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci. 59, 1105–1123.10.1175/1520-0469(2002)059<1105:POTDCB>2.0.CO;2
  • Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A. and co-authors. 2013. LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim. Dyn. 40, 2193–2222.10.1007/s00382-012-1343-y
  • Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J. C., Balaji, V. and co-authors. 2016. The art and science of climate model tuning. Bull. Amer. Meteorol. Soc. 98, 589–602.
  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F. and co-authors. 2006. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813.
  • Houze, R. A. Jr, Cheng, C.-P., Leary, C. A. and Gamache, J. F. 1980. Diagnosis of cloud mass and heat fluxes from radar and synoptic data. J. Atmos. Sci. 37, 754–773.10.1175/1520-0469(1980)037<0754:DOCMAH>2.0.CO;2
  • Houze, R. A. Jr and Betts, A. K. 1981. Convection in GATE. Rev. Geophys. 19, 541–576.10.1029/RG019i004p00541
  • Huang, Q., Marsham, J. H., Parker, D. J., Tian, W. and Weckwerth, T. 2009. A comparison of roll and nonroll convection and the subsequent deepening moist convection: an LEM case study based on SCMS data. Mon. Wea. Rev. 137, 350–365.10.1175/2008MWR2450.1
  • Jakub, F. and Mayer, B. 2016. 3-D radiative transfer in large-eddy simulations experiences coupling the TenStream solver to the UCLA-LES. Geosci. Mod. Dev. 9, 1413–1422.10.5194/gmd-9-1413-2016
  • Jam, A., Hourdin, F., Rio, C. and Couvreux, F. 2013. Resolved versus parametrized boundary-layer plumes. Part III: Derivation of a statistical scheme for cumulus clouds. Bound-Layer Meteorol. 147, 421–441.
  • Jonas, P. R. 1990. Observations of cumulus cloud entrainment. Atmos. Res. 25, 105–127.10.1016/0169-8095(90)90008-Z
  • Jonker, H. J. J., Heus, T. and Sullivan, P. P. 2008. A refined view of vertical mass transport by cumulus convection. Geophys. Res. Lett. 35, L07810.
  • Keil, C., Heinlein, F. and Craig, G. C. 2014. The convective adjustment time-scale as indicator of predictability of convective precipitation. Q.J.R. Meteorol. Soc. 140, 480–490.10.1002/qj.v140.679
  • Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C. and co-authors. 2014. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576.10.1038/nclimate2258
  • Kessler, E. 1969. On the distribution and continuity of water substance in atmospheric circulation. AMS Meteorol. Monogr. 10, 1–84. DOI:10.1007/978-1-935704-36-2_1.
  • Khairoutdinov, M. and Kogan, Y. 2000. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev. 128, 229–243.10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2
  • Khairoutdinov, M. F., Randall, D. A. and DeMott, C. 2005. Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62, 2136–2154.10.1175/JAS3453.1
  • Khairoutdinov, M. and Randall, D. 2006. High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci. 63, 3421–3436.10.1175/JAS3810.1
  • Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A. and Randall, D. A. 2009. Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst. 1, 15.10.3894/JAMES.2009.1.15
  • Kirshbaum, D. J. and Grant, A. L. M. 2012. Invigoration of cumulus cloud fields by mesoscale ascent. Q.J.R. Meteorol. Soc. 138, 2136–2150.10.1002/qj.v138.669
  • Klemp, J. B. and Wilhelmson, R. B. 1978. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 35, 1070–1096.10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
  • Klemp, J. B. 2011. A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev. 139, 2163–2169.10.1175/MWR-D-10-05046.1
  • Klinger, C. and Mayer, B. 2016. The neighboring column approximation (NCA) – A fast approach for the calculation of 3D thermal heating rates in cloud resolving models. J. Quant. Spectrosc. Radiat. Transf. 168, 17–28.10.1016/j.jqsrt.2015.08.020
  • Kogan, Y. L., Khairoutdinov, M. P., Lilly, D. K., Kogan, Z. N. and Liu, Q. 1995. Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci. 52, 2923–2940.10.1175/1520-0469(1995)052<2923:MOSCLI>2.0.CO;2
  • Krueger, S. K. 1988. Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci. 45, 2221–2250.10.1175/1520-0469(1988)045<2221:NSOTCC>2.0.CO;2
  • Krueger, S. K., Fu, Q., Liou, K. N. and Chin, H.-N. S. 1995. Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteorol. 34, 281–287.10.1175/1520-0450-34.1.281
  • Krueger, S. K., Morrison, H. and Fridlind, A. M. 2016. Cloud-resolving modeling: ARM and the GCSS story. AMS Meteorol. Monogr. 57, 25.1–25.16. DOI:10.1175/AMSMONOGRAPHS-D-15-0047.1.
  • Kuettner, J. P. 1971. Cloud bands in the earth’s atmosphere. Tellus 23, 404–425.
  • Kurowski, M. J., Grabowski, W. W. and Smolarkiewicz, P. K. 2014. Anelastic and compressible simulation of moist deep convection. J. Atmos. Sci. 71, 3767–3787.
  • Lafore, J.-P., Redelsperger, J.-L. and Jaubert, G. 1988. Comparison between a 3-dimensional simulation and Doppler Radar data of a tropical squall line – transports of mass, momentum, heat, and moisture. J. Atmos. Sci. 45, 3483–3500.10.1175/1520-0469(1988)045<3483:CBATDS>2.0.CO;2
  • Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V. and co-authors. 1998. The Meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Ann. Geophys. 16, 90–109.10.1007/s00585-997-0090-6
  • Larson, V. E., Golaz, J.-C. and Cotton, W. R. 2002. Small-scale and mesoscale variability in cloudy boundary layers: joint probability density functions. J. Atmos. Sci. 59, 3519–3539.10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2
  • LeMone, M. A. and Pennell, W. T. 1976. The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev. 104, 524–539.10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2
  • Lenderink, G., Siebesma, A. P., Cheinet, S., Irons, S., Jones, C. G. and co-authors. 2004. The diurnal cycle of shallow cumulus clouds over land: a single-column model intercomparison study. Q.J.R. Meteorol. Soc. 130, 3339–3364.10.1256/qj.03.122
  • Lenderink, G. and van Meijgaard, E. 2008. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514.10.1038/ngeo262
  • Lilly, D. K. 1962. On the numerical simulation of buoyant convection. Tellus 14, 148–172.
  • Lilly, D. 1967. The representation of small-scale turbulence in numerical simulation experiments Proceedings of the IBM Scientific Computing Symposium on Environmental Science, Yorktown Heights, NY, 195–210.
  • Lin, C. and Arakawa, A. 1997. The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci. 54, 1027–1043.10.1175/1520-0469(1997)054<1027:TMEPOS>2.0.CO;2
  • Lin, Y.-L., Farley, R. D. and Orville, H. D. 1983. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol. 22, 1065–1092.10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  • Lin, J. L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R. and co-authors. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J. Clim. 19, 2665–2690.
  • Liu, A. Q. G., Moore, W. K., Tsuboki, K. and Renfrew, I. A. 2004. A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys. Res. Lett. 31, L03101.
  • Lohou, F. and Patton, E. 2014. Surface energy balance and buoyancy response to shallow cumulus shading. J. Atmos. Sci. 71, 665–682.10.1175/JAS-D-13-0145.1
  • Lothon, M., Couvreux, F., Donier, S., Guichard, F., Lacarrère, P. and co-authors. 2007. Impact of coherent eddies on airborne measurements of vertical turbulent fluxes. Bound-Layer Meteorol. 124, 425–447.10.1007/s10546-007-9182-9
  • Ludlam, F. H. 1966. Cumulus and cumulonimbus convection. Tellus 18, 687–698.
  • Malkus, J. S. 1953. Comment on ‘Bubble theory of penetrative convection’ by Scorer, R. S., Ludlam, F. H. and Stommel, 1953. Q.J.R. Meteorol. Soc. 79, 288–293.10.1002/(ISSN)1477-870X
  • Manabe, S. and Wetherald, R. T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259.10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
  • Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F. and co-authors. 2015. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model Dev. 8, 2515–2551.10.5194/gmd-8-2515-2015
  • Marshall, J. S. and Palmer, W. Mc K 1948. The distribution of raindrops with size. J. Meteorol. 5, 165–166.10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  • Marsham, J. H., Knippertz, P., Dixon, N. S., Parker, D. J. and Lister, G. 2011. The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys. Res. Lett. 38, L16803.
  • Marsham, J. H., Dixon, N., Garcia-Carreras, L., Lister, G. M. S., Parker, D. J. and co-authors. 2013. The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40, 1843–1849.10.1002/grl.50347
  • Mason, P. J. 1989. Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 1492–1516.10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2
  • Matheou, G., Chung, D., Nuijens, L., Stevens, B. and Teixeira, J. 2011. On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev. 139, 2918–2939.10.1175/2011MWR3599.1
  • Mellado, J. P., Stevens, B., Schmidt, H. and Peters, N. 2009. Buoyancy reversal in cloud-top mixing layers. Q.J.R. Meteorol. Soc. 135, 963–978.10.1002/qj.v135:641
  • Mellor, G. L. 1977. The gaussian cloud model relations. J. Atmos. Sci. 34, 356–358.10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2
  • Meredith, E. P., Semenov, V. A., Maraun, D., Park, W. and Chernokulsky, A. V. 2015. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. Nat. Geosci. 8, 615–619.10.1038/ngeo2483
  • Mesinger, F. and Arakawa, A. 1976. Numerical methods used in atmospheric models. GARP Publications Series No. 17. WMO/ICSU Joint Organizing Committee, 64 pp.
  • Meyers, M. P., Walko, R. L., Harrington, J. Y. and Cotton, W. R. 1997. New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res. 45, 3–39.10.1016/S0169-8095(97)00018-5
  • Milbrandt, J. A. and Yau, M. K. 2005. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 62, 3051–3064.10.1175/JAS3534.1
  • Miller, M. J. and Pearce, R. P. 1974. A three dimensional primitive equation model of cumulonimbus convection. Q.J.R. Meteorol. Soc. 100, 133–154.10.1002/(ISSN)1477-870X
  • Misra, A. and Pullin, D. I. 1997. A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids. 9, 2443–2454.10.1063/1.869361
  • Miura, H., Satoh, M., Nasuno, T., Noda, A. T. and Oouchi, K. 2007. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science 318, 1763–1765.10.1126/science.1148443
  • Miyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H. and co-authors. 2014. Madden-Julian oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nat. Commun. 5, 3769.
  • Moeng, C. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062.10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
  • Moeng, C.-H. and Sullivan, P. P. 2002. Large-eddy simulation. In: Encyclopedia of Atmospheric Sciences. 2nd ed (eds. J. R. Holton, J. Pyle and F. Zhang) Vol. 4. Academic Press, San Diego, CA, pp. 243–240.
  • Morrison, H. and Grabowski, W. W. 2008. A novel approach for representing ice microphysics in models: description and tests using a kinematic framework. J. Atmos. Sci. 65, 1528–1548.10.1175/2007JAS2491.1
  • Morrison, H., Thompson, G. and Tatarskii, V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon. Wea. Rev. 137, 991–1007.10.1175/2008MWR2556.1
  • Muller, C. J., O’Gorman, P. A. and Back, L. E. 2011. Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate 24, 2784–2800.10.1175/2011JCLI3876.1
  • Muller, C. J. 2013. Impact of convective organization on the response of tropical precipitation extremes to warming. J Climate 26, 5028–5043.10.1175/JCLI-D-12-00655.1
  • Müller, G. and Chlond, A. 1996. Three-dimensional numerical study of cell broadening during cold-air outbreaks. Bound-Layer Meteorol. 81, 289–323.
  • Neggers, R. A. J., Jonker, H. J. J. and Siebesma, A. P. 2003a. Size statistics of cumulus cloud populations in large-eddy simulations. J Atmos Sci. 60, 1060–1074.10.1175/1520-0469(2003)60<1060:SSOCCP>2.0.CO;2
  • Neggers, R. A. J., Duynkerke, P. G. and Rodts, S. M. A. 2003b. Shallow cumulus convection: a validation of large-eddy simulation against aircraft and Landsat observations. Quart. J. Roy. Met. Soc. 129, 2671–2696.10.1256/qj.02.93
  • Neggers, R. A. J. 2009. A dual mass flux framework for boundary layer convection. Part II: clouds. J. Atmos. Sci. 66, 1489–1506.
  • Neggers, R. A. J. 2015. Attributing the behavior of low-level clouds in large-scale models to subgrid-scale parameterizations. J. Adv. Model. Earth Syst. 7, 2029–2043.10.1002/jame.v7.4
  • O’Gorman, P. A. 2015. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59.10.1007/s40641-015-0009-3
  • Ogura, Y. and Phillips, N. A. 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179.10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
  • Ogura, Y. 1963. The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: a numerical calculation. J. Atmos. Sci. 20, 407–424.10.1175/1520-0469(1963)020<0407:TEOAMC>2.0.CO;2
  • Orszag, S. 1971. Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech. 49, 75–112.10.1017/S0022112071001940
  • Oue, M., Kollias, P., North, K. W., Tatarevic, A., Endo, S. and co-authors. 2016. Estimation of cloud fraction profile in shallow convection using a scanning cloud radar. Geophys. Res. Lett. 43, 10998–11006.10.1002/2016GL070776
  • Oueslati, B. and Bellon, G. 2013. Convective entrainment and large-scale organization of tropical precipitation: sensitivity of the CNRM-CM5 hierarchy of models. J. Climate 26, 2931–2946.10.1175/JCLI-D-12-00314.1
  • Panthou, G., Vischel, T. and Lebel, T. 2014. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 34, 3998–4006.10.1002/joc.2014.34.issue-15
  • Park, S., Heus, T. and Gentine, P. 2017. Role of convective mixing and evaporative cooling in shallow convection. J. Geophys. Res 122, 5351–5363.
  • Patton, E. G., Sullivan, P. P. and Moeng, C. H. 2005. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci. 62, 2078–2097.10.1175/JAS3465.1
  • Pergaud, J., Masson, V., Malardel, S. and Couvreux, F. 2009. A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound-Layer Meteorol. 132, 83–106.10.1007/s10546-009-9388-0
  • Phillips, V. T., Donner, L. J. and Garner, S. T. 2007. Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci. 64, 738–761.10.1175/JAS3869.1
  • Pielke, R. A. Sr. 2013. Mesoscale Meteorological Modeling. 3rd ed., Vol. 98, International Geophysics Series, Academic press, San Diego, CA.
  • Pincus, R. 2013. Radiation across spatial scales (and model resolutions). Proceedings of the ECMWF Workshop on Parametrization of Clouds and Precipitation Across Model Resolutions, Reading, UK, pp. 109–115.
  • Pincus, R. and Stevens, B. 2009. Monte Carlo spectral integration: a consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst. 1, 1–9.
  • Pope, S. B. 2000. Turbulent Flows Cambridge University Press, Cambridge.10.1017/CBO9780511840531
  • Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N. and co-authors. 2015. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361.10.1002/2014RG000475
  • Raasch, S. and Schröter, M. 2001. PALM – A large-eddy simulation model performing on massively parallel computers. Meteorol. Z. 10, 363–372.10.1127/0941-2948/2001/0010-0363
  • Randall, D. A., Xu, K.-M., Somerville, R. J. C. and Iacobellis, S. 1996. Single-column models and cloud ensemble models as links between observations and climate models. J. Climate 9, 1683–1697.10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2
  • Randall, D. A., Khairoutdinov, M., Arakawa, A. and Grabowski, W. 2003. Breaking the cloud parameterization deadlock. Bull. Amer. Meteorol. Soc. 84, 1547–1564.10.1175/BAMS-84-11-1547
  • Raymond, D. J. and Zeng, X. 2005. Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Q.J.R. Meteorol. Soc. 131, 1301–1320.10.1256/qj.03.97
  • Redelsperger, J.-L. and Sommeria, G. 1981. Methode de representation de la turbulence d'echelle inferieure a la maille pour un modele tri-dimensionnel de convection nuageuse. Bound-Layer Meteorol. 21, 509–530.10.1007/BF02033598
  • Redelsperger, J.-L. and Sommeria, G. 1986. Three-Dimensional Simulation of a Convective Storm: Sensitivity Studies on Subgrid Parameterization and Spatial Resolution. J. Atmos. Sci. 43, 2619–2635.10.1175/1520-0469(1986)043<2619:TDSOAC>2.0.CO;2
  • Redelsperger, J.-L. and Lafore, J.-P. 1988. A Three-Dimensional Simulation of a Tropical Squall Line: Convective Organization and Thermodynamic Vertical Transport. J. Atmos. Sci. 45, 1334–1356.10.1175/1520-0469(1988)045<1334:ATDSOA>2.0.CO;2
  • Redelsperger, J. L., Brown, P. R. A., Guichard, F., How, C., Kawasima, M. and co-authors. 2000a. A gcss model intercomparison for a tropical squall line observed during toga-coare. I: Cloud-resolving models. Q.J.R. Meteorol. Soc. 126, 823–863.10.1002/qj.49712656404
  • Redelsperger, J.-L., Guichard, F. and Mondon, S. 2000b. A Parameterization of Mesoscale Enhancement of Surface Fluxes for Large-Scale Models. J. Climate. 13, 402–421.10.1175/1520-0442(2000)013<0402:APOMEO>2.0.CO;2
  • Redelsperger, J., Parsons, D. B. and Guichard, F. 2002. Recovery Processes and Factors Limiting Cloud-Top Height following the Arrival of a Dry Intrusion Observed during TOGA COARE. J. Atmos. Sci. 59, 2438–2457.10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2
  • Ricard, D., Lac, C., Riette, S., Legrand, R. and Mary, A. 2013. Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Q.J.R. Meteorol. Soc. 139, 1327–1341.10.1002/qj.v139.674
  • Rio, C. and Hourdin, F. 2008. A Thermal Plume Model for the Convective Boundary Layer: Representation of Cumulus Clouds. J. Atmos. Sci. 65, 407–425.10.1175/2007JAS2256.1
  • Rio, C., Hourdin, F., Couvreux, F. and Jam, A. 2010. Resolved versus Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of Mixing Rates for Mass-Flux Schemes. Bound-Layer Meteorol. 135, 469–483.10.1007/s10546-010-9478-z
  • Robe, F. R. and Emanuel, K. A. 1996. Moist Convective Scaling: Some Inferences from Three-Dimensional Cloud Ensemble Simulations. J. Atmos. Sci. 53, 3265–3275.10.1175/1520-0469(1996)053<3265:MCSSIF>2.0.CO;2
  • Rochetin, N., Couvreux, F., Grandpeix, J.-Y. and Rio, C. 2014. Deep Convection Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic Triggering Formulation. J. Atmos. Sci. 71, 496–514.10.1175/JAS-D-12-0336.1
  • Rochetin, N., Couvreux, F. and Guichard, F. 2017. Morphology of breeze circulations induced by surface flux heterogeneities and their impact on convection initiation. Q.J.R. Meteorol. Soc. 143, 463–478.10.1002/qj.2017.143.issue-702
  • Romps, D. M. 2008. The Dry-Entropy Budget of a Moist Atmosphere. J. Atmos. Sci. 65, 3779–3799.10.1175/2008JAS2679.1
  • Romps, D. M. 2010. A Direct Measure of Entrainment. J. Atmos. Sci. 67, 1908–1927.10.1175/2010JAS3371.1
  • Romps, D. M. and Kuang, Z. 2010. Nature versus Nurture in Shallow Convection. J. Atmos. Sci. 67, 1655–1666.10.1175/2009JAS3307.1
  • Romps, D. M. 2011. Response of Tropical Precipitation to Global Warming. J. Atmos. Sci. 68, 123–138.10.1175/2010JAS3542.1
  • Ruppert, J. H. 2016. Diurnal timescale feedbacks in the tropical cumulus regime. J. Adv. Model. Earth Syst. 8, 1483–1500.
  • Sagaut, P. 2006. Large-eddy simulation for incompressible flows – An introduction, 3rd ed. Springer-Verlag, Scientific Computation series, 556 pages.
  • Sanderson, B. M., Piani, C., Ingram, W. J., Stone, D. A. and Allen, M. R. 2008. Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Clim. Dyn. 30, 175–190.10.1007/s00382-007-0280-7
  • Sandu, I. and Stevens, B. 2011. On the Factors Modulating the Stratocumulus to Cumulus Transitions. J. Atmos. Sci. 68, 1865–1881.10.1175/2011JAS3614.1
  • Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T. and co-authors. 2008. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys. 227, 3486–3514.10.1016/j.jcp.2007.02.006
  • Savic-Jovcic, V. and Stevens, B. 2008. The Structure and Mesoscale Organization of Precipitating Stratocumulus. J. Atmos. Sci. 65, 1587–1605.10.1175/2007JAS2456.1
  • Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P. and Bosveld, F. C. 2015. A Year-Long Large-Eddy Simulation of the Weather over Cabauw: An Overview. Mon. Wea. Rev. 143, 828–844.10.1175/MWR-D-14-00293.1
  • Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D. and Girard, C. 2002. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev. 130, 2459–2480.
  • Schlemmer, L., Hohenegger, C., Schmidli, J., Bretherton, C. S. and Schär, C. 2011. An Idealized Cloud-Resolving Framework for the Study of Midlatitude Diurnal Convection over Land. J. Atmos. Sci. 68, 1041–1057.10.1175/2010JAS3640.1
  • Schlemmer, L. and Hohenegger, C. 2014. The Formation of Wider and Deeper Clouds as a Result of Cold-Pool Dynamics. J. Atmos. Sci. 71, 2842–2858.10.1175/JAS-D-13-0170.1
  • Schmidt, H. and Schumann, U. 1989. Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562.10.1017/S0022112089000753
  • Schröter, M., Raasch, S. and Jansen, H. 2005. Cell broadening revisited: Results from high-resolution large-eddy simulations of cold air outbreaks. J. Atmos. Sci. 62, 2023–2032.
  • Schumann, U. and Sweet, R. 1988. Fast Fourier transforms for direct solution of poisson's equation with staggered boundary conditions. J. Comput. Phys. 75, 123–137.10.1016/0021-9991(88)90102-7
  • Seifert, A. and Beheng, K. D. 2006. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys. 92, 45–66.10.1007/s00703-005-0112-4
  • Seifert, A. and Heus, T. 2013. Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. 13, 5631–5645.
  • Sessions, S. L., Sugaya, S., Raymond, D. J. and Sobel, A. H. 2010. Multiple equilibria in a cloud-resolving model using the weak temperature gradient approximation. J. Geophys. Res. 115, D12110.
  • Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F. and co-authors. 2011. The AROME-France convective-scale operational model. Mon. Wea. Rev. 139, 976–991.10.1175/2010MWR3425.1
  • Siebesma, A. P. and Holtslag, A. A. M. 1996. Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci. 53, 2354–2364.10.1175/1520-0469(1996)053<2354:MIOEAD>2.0.CO;2
  • Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J. and co-authors. 2003. A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci. 60, 1201–1219.10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
  • Siebesma, A. P., Soares, P. M. M. and Teixeira, J. 2007. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci. 64, 1230–1248.10.1175/JAS3888.1
  • Simpson, J. and Wiggert, V. 1969. Models of precipitating cumulus towers. Mon. Wea. Rev. 97, 471–489.10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
  • Singh, M. S. and O’Gorman, P. A. 2014. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett. 41, 6037–6044.10.1002/2014GL061222
  • Singleton, A. and Toumi, R. 2013. Super-Clausius–Clapeyron scaling of rainfall in a model squall line. Q.J.R Meteorol. Soc. 139, 334–339.
  • Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S. H. and co-authors. 2012. A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering. Mon. Wea. Rev. 140, 3090–3105.10.1175/MWR-D-11-00215.1
  • Slingo, A. 1989. A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci. 46, 1419–1427.10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev. 91, 99–164.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Smolarkiewicz, P. K. and Grabowski, W. W. 1990. The multidimensional positive definite advection transport algorithm: nonoscillatory option. J. Comput. Phys. 86, 355–375.
  • Sobel, A. H. and Bretherton, C. S. 2000. Modeling tropical precipitation in a single column. J. Climate 13, 4378–4392.10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2
  • Sommeria, G. 1976. Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J. Atmos. Sci. 33, 216–241.10.1175/1520-0469(1976)033<0216:TDSOTP>2.0.CO;2
  • Sommeria, G. and Deardorff, J. W. 1977. Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci. 34, 344–355.10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2
  • Sommeria, G. and LeMone, M. A. 1978. Direct testing of a three-dimensional model of the planetary boundary layer against experimental data. J. Atmos. Sci. 35, 25–39.10.1175/1520-0469(1978)035<0025:DTOATD>2.0.CO;2
  • Stephens, G. 1978. Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci. 35, 2123–2132.10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2
  • Stevens, B., Ackerman, A. S., Albrecht, B. A., Brown, A. R., Chlond, A. and co-authors. 2001. Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci. 58, 1870–1891.10.1175/1520-0469(2001)058<1870:SOTWCU>2.0.CO;2
  • Stevens, B. and Lenschow, D. H. 2001. Observations, experiments, and large eddy simulation. Bull. Amer. Meteorol. Soc. 82, 283–294.10.1175/1520-0477(2001)082<0283:OEALES>2.3.CO;2
  • Stevens, B., Moeng, C.-H. and Sullivan, P. P. 1999. Large-eddy simulations of radiatively driven convection: sensitivities to the representation of small scales. J. Atmos. Sci. 56, 3963–3984.10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2
  • Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A. and co-authors. 2005. Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev. 133, 1443–1462.10.1175/MWR2930.1
  • Stevens, B. and Seifert, A. 2008. Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteorol. Soc. Japan 86A, 143–162.10.2151/jmsj.86A.143
  • Sui, C. H., Lau, K. M., Tao, W. K. and Simpson, J. 1994. The tropical water and energy cycles in a cumulus ensemble model. Part I: equilibrium climate. J. Atmos. Sci. 51, 711–728.10.1175/1520-0469(1994)051<0711:TTWAEC>2.0.CO;2
  • Sullivan, P. P., McWilliams, J. C. and Patton, E. G. 2014. Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci. 71, 4001–4027.10.1175/JAS-D-14-0095.1
  • Sullivan, P. P. and Patton, E. G. 2011. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 68, 2395–2415.10.1175/JAS-D-10-05010.1
  • Sun, Z. and Shine, K. P. 1995. Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds. J. Climate 8, 1874–1888.10.1175/1520-0442(1995)008<1874:POICRP>2.0.CO;2
  • Takemi, T. and Rotunno, R. 2003. The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev. 131, 2085–2101.10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2
  • Takemi, T. and Rotunno, R. 2005. Corrigendum Mon. Wea. Rev. 133, 339–341.10.1175/MWR-2847.1
  • Takemi, T. 2005. Explicit simulations of convective-scale transport of mineral dust in severe convective weather. J. Meteorol. Soc. Japan. 83A, 187–203.10.2151/jmsj.83A.187
  • Tao, W.-K. and Soong, S.-T. 1986. A study of the response of deep tropical clouds to mesoscale processes: three-dimensional numerical experiments. J. Atmos. Sci. 43, 2653–2676.10.1175/1520-0469(1986)043<2653:ASOTRO>2.0.CO;2
  • Tao, W. K., Simpson, J. and McCumber, M. 1989. An ice-water saturation adjustment. Mon. Wea. Rev. 117, 231–235.10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
  • Tao, W.-K., Simpson, J., Sui, C.-H., Shie, C.-L., Zhou, B. and co-authors. 1999. Equilibrium states simulated by cloud-resolving models. J. Atmos. Sci. 56, 3128–3139.10.1175/1520-0469(1999)056<3128:ESSBCR>2.0.CO;2
  • Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T. and co-authors. 2017. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 544, 475–478.10.1038/nature22069
  • Thayer-Calder, K. and Randall, D. A. 2009. The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci. 66, 3297–3312.10.1175/2009JAS3081.1
  • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779–1800.10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
  • Tomita, H., Miura, H., Iga, S., Nasuno, T. and Satoh, M. 2005. A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett. 32(8), L08805.
  • Tompkins, A. M. and Craig, G. C. 1998. Radiative-convective equilibrium in a three-dimensional cloud ensemble model. Q.J.R. Meteorol. Soc. 124, 2073–2097.
  • Tompkins, A. M. 2000. The impact of dimensionality on long-term cloud-resolving model simulations. Mon. Wea. Rev. 128, 1521–1535.10.1175/1520-0493(2000)128<1521:TIODOL>2.0.CO;2
  • Tompkins, A. M. 2001. Organization of tropical convection in low vertical wind shears: the role of cold pools. J. Atmos. Sci. 58, 1650–1672.10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2
  • Tompkins, A. M. and Semie, A. G. 2017. Organization of tropical convection in low vertical wind shears: role of updraft entrainment. J. Adv. Model. Earth Syst. 9, 1046–1068.
  • Torri, G., Kuang, Z. and Tian, Y. 2015. Mechanisms for convection triggering by cold pools. Geophys. Res. Lett. 42, 1943–1950.10.1002/2015GL063227
  • Trapp, R. J. 2013. Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, New York, NY.10.1017/CBO9781139047241
  • Trier, S. B., Chen, F. and Manning, K. W. 2004. A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev. 132, 2954–2976.10.1175/MWR2839.1
  • Troen, I. W. and Mahrt, L. 1986. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Layer Meteorol. 37, 129–148.10.1007/BF00122760
  • Ulbrich, C. W. 1983. Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteorol. 22, 1764–1775.10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
  • van Zanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A. S. and co-authors. 2011. Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst. 3, M06001.
  • Vial, J., Dufresne, J. L. and Bony, S. 2013. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41, 3339–3362.10.1007/s00382-013-1725-9
  • Vinkovic, I., Aguirre, C., Ayrault, M. and Simoëns, S. 2006. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Bound-Layer Meteorol. 121, 283–311.10.1007/s10546-006-9072-6
  • Vogel, R., Nuijens, L. and Stevens, B. 2016. The role of precipitation and spatial organization in the response of trade-wind clouds to warming. J. Adv. Model. Earth Syst. 8, 843–862.
  • Wang, H. and Feingold, G. 2009. Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci. 66, 3237–3256.10.1175/2009JAS3022.1
  • Wang, Y., Zhang, G. J. and Craig, G. C. 2016. Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophys. Res. Lett. 43, 6612–6619.10.1002/2016GL069818
  • Wapler, K. and Mayer, B. 2008. A fast three-dimensional approximation for the calculation of surface irradiance in large-eddy simulation models. J. Appl. Meteorol. Climatol. 47, 3061–3071.10.1175/2008JAMC1842.1
  • Warner, J. 1970. On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci. 27, 1035–1040.10.1175/1520-0469(1970)027<1035:OSSODM>2.0.CO;2
  • Warner, T. T. 2010. Numerical weather and climate prediction. Cambridge University Press, Cambridge.
  • Weckwerth, T. M., Wilson, J. W. and Wakimoto, R. M. 1996. Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev. 124, 769–784.10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2
  • Weckwerth, T. M., Horst, T. W. and Wilson, J. W. 1999. An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev. 127, 2160–2179.10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2
  • Weisman, M. L., Skamarock, W. C. and Klemp, J. B. 1997. The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev. 125, 527–548.10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2
  • Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V. and Berg, P. and co-authors. 2014. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555.10.1002/2014RG000464
  • Wicker, L. J. and Skamarock, W. C. 2002. Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev. 130, 2088–2097.10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
  • Wilhelmson, R. B. and Klemp, J. B. 1981. A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci. 38, 1581–1600.10.1175/1520-0469(1981)038<1581:ATDNSO>2.0.CO;2
  • Wyngaard, J. C. 2004. Changing the face of small-scale meteorology. In: Atmospheric Turbulence and Mesoscale Meteorology. (eds. E. Fedorovich, R. Rotunno and B. Stevens). Cambridge University Press, Cambridge, pp. 17–34.10.1017/CBO9780511735035
  • Wyngaard, J. C. 2010. Turbulence in the Atmosphere Cambridge University Press, Cambridge.10.1017/CBO9780511840524
  • Wood, R. 2012. Stratocumulus clouds. Mon. Wea. Rev. 140, 2373–2423.10.1175/MWR-D-11-00121.1
  • Wood, R. and Hartmann, D. L. 2006. Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J. Climate. 19, 1748–1764.10.1175/JCLI3702.1
  • Wu, X., Grabowski, W. W. and Moncrieff, M. W. 1998. Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: two-dimensional modeling study. J. Atmos. Sci. 55, 2693–2714.10.1175/1520-0469(1998)055<2693:LTBOCS>2.0.CO;2
  • Wyant, M. C., Bretherton, C. S., Rand, H. A. and Stevens, D. E. 1997. Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci. 54, 168–192.10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2
  • Xu, K. M., Arakawa, A. and Krueger, S. K. 1992. The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci. 49, 2402–2420.10.1175/1520-0469(1992)049<2402:TMBOCE>2.0.CO;2
  • Xu, K. 1994. A statistical analysis of the dependency of closure assumptions in cumulus parameterization on the horizontal resolution. J. Atmos. Sci. 51, 3674–3691.10.1175/1520-0469(1994)051<3674:ASAOTD>2.0.CO;2
  • Xu, K. M. 1995. Partitioning mass, heat, and moisture budgets of explicitly simulated cumulus ensembles into convective and stratiform components. J. Atmos. Sci. 52, 551–573.10.1175/1520-0469(1995)052<0551:PMHAMB>2.0.CO;2
  • Xu, K. M. and Randall, D. A. 1996. Explicit simulation of cumulus ensembles with the GATE Phase III data: comparison with observations. J. Atmos. Sci. 53, 3710–3736.10.1175/1520-0469(1996)053<3710:ESOCEW>2.0.CO;2
  • Xu, K. M. and Randall, D. A. 1999. A sensitivity study of radiative–convective equilibrium in the tropicswith a convection-resolving model. J. Atmos. Sci. 56, 3385–3400.10.1175/1520-0469(1999)056<3385:ASSORC>2.0.CO;2
  • Xu, K.-M., Cederwall, R. T., Donner, L. J., Grabowski, W. W., Guichard, F. and co-authors. 2002. An intercomparison of cloud-resolving models with the ARM summer 1997 IOP data. Q.J.R. Meteorol. Soc. 128, 593–624.
  • Xue, H., Feingold, G. and Stevens, B. 2008. Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci. 65, 392–406.10.1175/2007JAS2428.1
  • Yano, J. I., Guichard, F., Lafore, J. P., Redelsperger, J. L. and Bechtold, P. 2004. Estimations of mass fluxes for cumulus parameterizations from high-resolution spatial data. J. Atmos. Sci. 61, 829–842.10.1175/1520-0469(2004)061<0829:EOMFFC>2.0.CO;2
  • Yano, J.-I., Bister, M., Fuchs, Ž., Gerard, L., Phillips, V. T. and co-authors. 2013. Phenomenology of convection-parameterization closure. Atmos. Chem. Phys. 13, 4111–4131.10.5194/acp-13-4111-2013
  • Yau, M. K. 1979. Perturbation pressure and cumulus convection. J. Atmos. Sci. 36, 690–694.10.1175/1520-0469(1979)036<0690:PPACC>2.0.CO;2
  • Yeo, K. and Romps, D. M. 2013. Measurement of convective entrainment using lagrangian particles. J. Atmos. Sci. 70, 266–277.10.1175/JAS-D-12-0144.1
  • Zhang, C. 2005. Madden-Julian oscillation. Rev. Geophys. 43, RG2003.
  • Zhang, M., Bretherton, C. S., Blossey, P. N., Austin, P. H. and Bacmeister, J. T. 2013. CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J. Adv. Model. Earth Syst. 5, 826–842.
  • Zhao, M. and Austin, P. H. 2005. Life cycle of numerically simulated shallow cumulus clouds. Part II: mixing dynamics. J. Atmos. Sci. 62, 1291–1310.10.1175/JAS3415.1
  • Zhu, P., Albrecht, B. A., Ghate, V. P. and Zhu, Z. 2010. Multiple-scale simulations of stratocumulus clouds. J. Geophys. Res. 115, D23201.10.1029/2010JD014400
  • Zuidema, P., Li, Z., Hill, R. J., Bariteau, L., Rilling, B. and co-authors. 2012. On trade wind cumulus cold pools. J. Atmos. Sci. 69, 258–280.10.1175/JAS-D-11-0143.1