850
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Orographic–convective flows, wave reflection, and gravity-wave momentum fluxes in a two-layer hydrostatic atmosphere

, &
Pages 1-16 | Received 19 Jul 2017, Accepted 02 Jun 2018, Published online: 10 Aug 2018

References

  • Beres, J. H. 2004. Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci. 61, 1805–1815.
  • Bretherton, C. 1988. Group velocity and the linear response of stratified fluids to internal heat or mass sources. J. Atmos. Sci. 45, 81–93.
  • Bretherton, F. P. 1969. Momentum transport by gravity waves. Q. J. Royal Met. Soc. 95, 213–243.
  • Chun, H.-Y. 1995. Enhanced response of a stably stratified two-layer atmosphere to low-level heating. J. Met. Soc. Jpn. 73, 685–696.
  • Chun, H.-Y. and Baik, J.-J. 1994. Weakly nonlinear response of a stably stratified atmosphere to diabatic forcing in a uniform flow. J. Atmos. Sci. 51, 3109–3121.
  • Chun, H.-Y. and Baik, J.-J. 1998. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci. 55, 3299–3310.
  • Chun, H.-Y. and Baik, J.-J. 2002. An updated parameterization of convectively forced gravity wave drag for use in large-scale models. J. Atmos. Sci. 59, 1006–1017.
  • Crook, N. A. and Tucker, D. F. 2005. Flow over heated terrain. Part I: linear theory and idealized numerical simulations. Mon. Weather Rev. 133, 2552–2564.
  • Davies, H. C. and Schár, C. 1986. Diabatic modification of airflow over a mesoscale orographic ridge: a model study of the coupled response. Q. J. Royal Met. Soc. 112, 711–730.
  • Durran, D. R. 1992. Two-layer solutions to Long’s equation for vertically propagating mountain waves: How good is linear theory?. Q. J. Royal Met. Soc. 118, 415–433.
  • Eliassen, A. and Palm, E. 1960. On the transfer of energy in stationary mountain waves. Geofys. Publ. 22, 1–23.
  • Fueglistaler, S., Haynes, P. H. and Forster, P. M. 2011. The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys. 11, 3701–3711.
  • Han, J.-Y. and Baik, J.-J. 2009. Theoretical studies of convectively forced mesoscale flows in three dimensions. Part I: uniform basic-state flow. J. Atmos. Sci. 66, 947–965.
  • Han, J.-Y. and Baik, J.-J. 2010. Theoretical studies of convectively forced mesoscale flows in three dimensions. Part II: shear flow with a critical level. J. Atmos. Sci. 67, 694–712.
  • Holton, J. R. 1982. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci. 39, 791–799.
  • Holton, J. R. and Hakim, G. J. 2012. An Introduction to Dynamic Meteorology. 5th ed. Academic Press, Oxford, 552pp.
  • Houze, R. A. Jr. 2014. Cloud Dynamics. 2nd ed. Academic Press, Oxford, 432pp.
  • Iwasaki, T., Yamada, S. and Tada, K. 1989. A parameterization scheme of orographic gravity wave drag with two different vertical partitionings. Part I: impacts on medium-range forecasts. J. Met. Soc. Jpn. 67, 11–27.
  • Jiang, Q. 2003. Moist dynamics and orographic precipitation. Tellus 55A, 301–316.
  • Keller, T. L. 1994. Implications of the hydrostatic assumption on atmospheric gravity waves. J. Atmos. Sci. 51, 1915–1929.
  • Kim, Y.‐J., Eckermann, S. D. and Chun, H.‐Y. 2003. An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos. Ocean 41, 65–98.
  • Kirshbaum, D. J. 2013. On thermally forced circulations over heated terrain. J. Atmos. Sci. 70, 1690–1709.
  • Lin, Y.-L. 1986. A study of the transient dynamics of orographic rain. Pap. Meteor. Res 9, 20–44.
  • Lin, Y.-L. 1987. Two-dimensional response of a stably stratified shear flow to diabatic heating. J. Atmos. Sci. 44, 1375–1393.
  • Lin, Y.-L. 2007. Mesoscale Dynamics. Cambridge University Press, Cambridge, 630pp.
  • Lin, Y.-L. and Chun, H.-Y. 1991. Effects of diabatic cooling in a shear flow with a critical level. J. Atmos. Sci. 48, 2476–2491.
  • Lin, Y.-L. and Li, S. 1988. Three-dimensional response of a shear flow to elevated heating. J. Atmos. Sci. 45, 2987–3002.
  • Lin, Y.-L. and Smith, R. B. 1986. Transient dynamics of airflow near a local heat source. J. Atmos. Sci. 43, 40–49.
  • Lindzen, R. S. 1981. Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714.
  • McFarlane, N. A. 1987. The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 44, 1775–1800.
  • Palmer, T. N., Shutts, G. J. and Swinbank, R. 1986. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q. J. Royal Met. Soc. 112, 1001–1039.
  • Pierrehumbert, R., T. 1986. An essay on the parameterization of orographic gravity wave drag. In: Proceedings of Seminar/Workshop on Observation, Theory, and Modeling of Orographic Effects. United Kingdom, ECMWF, 251–378.
  • Queney, P. 1948. The problem of airflow over mountain: a summary of theoretical studies. Bull. Am. Meteor. Soc. 29, 16–26.
  • Raymond, D. J. 1972. Calculation of airflow over an arbitrary ridge including diabatic heating and cooling. J. Atmos. Sci. 29, 837–843.
  • Reisner, J. M. and Smolarkiewicz, P. K. 1994. Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci. 51, 117–133.
  • Smith, R. B. 1980. Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus 32, 348–364.
  • Smith, R. B. and Lin, Y.-L. 1982. The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Q. J. Royal Met. Soc. 108, 353–378.
  • Song, I.-S. and Chun, H.-Y. 2005. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: theory. J. Atmos. Sci. 62, 107–124.
  • Song, I.-S. and Chun, H.-Y. 2008. A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci. 65, 1204–1224.
  • Song, I.-S., Chun, H.-Y., Garcia, R. R. and Boville, B. A. 2007. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part II: impacts in a GCM (WACCM). J. Atmos. Sci. 64, 2286–2308.
  • Tian, W. and Parker, D. J. 2003. A modeling study and scaling analysis of orographic effects on boundary layer shallow convection. J. Atmos. Sci. 60, 1981–1991.
  • Woo, S., Baik, J.-J., Lee, H., Han, J.-Y. and Seo, J. M. 2013. Nonhydrostatic effects on convectively forced mesoscale flows. J. Korean Met. Soc. 23, 293–305.
  • Wurtele, M. G., Sharman, R. D. and Keller, T. L. 1987. Analysis and simulations of a troposphere-stratosphere gravity wave model. Part I. J. Atmos. Sci. 44, 3269–3281.