1,118
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Uncertainty and sensitivity of wave-induced sea surface roughness parameterisations for a coupled numerical weather prediction model

ORCID Icon, &
Pages 1-18 | Received 21 Sep 2016, Accepted 03 Sep 2018, Published online: 08 Oct 2018

References

  • Bao, J.-W., Gopalakrishnan, S. G., Michelson, S. A., Marks, F. D. and Montgomery, M. T. 2012. Impact of physics representations in the HWRFX model on simulated hurricane structure and wind–pressure relationships. Mon. Weather Rev. 140, 3278–3299. doi: 10.1175/MWR-D-11-00332.1.
  • Booij, N., Ris, R. C. and Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions, part I. Model description and validation. J. Geophys. Res. 104, 7649–7666. doi: 10.1029/98JC02622.
  • Bryan, G. H. 2012. Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Weather Rev. 140, 1125–1143. doi: 10.1175/MWR-D-11-00231.1.
  • Carlson, T. N. and Boland, F. E. 1978. Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor. 17, 998–1013. doi: 10.1175/1520-0450(1978)017<0998:AOURCU>2.0.CO;2.
  • Cavaleri, L., Fox-Kemper, B. and Hemer, M. 2012. Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc. 93, 1651–1661. doi: 10.1175/BAMS-D-11-00170.1.
  • Cavaleri, L., Roland, A., Dutour, M., Bertotti, L. and Torrisi, L. 2012. On the coupling of COSMO to WAM, In Proceedings of the ECMWF Workshop on Ocean-Waves.
  • Chen, S. S. and Curcic, M. 2016. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled modelling and observations. Ocean Model 103, 161–176. doi: 10.1016/j.ocemod.2015.08.005.
  • Chen, S. S., Price, J. F., Zhao, W., Donelan, M. A. and Walsh, E. J. 2007. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull. Am. Meteor. Soc. 88, 311–317. doi: 10.1175/BAMS-88-3-311.
  • Chen, S. S., Zhao, W., Donelan, M. A. and Tolman, H. L. 2013. Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci. 70, 3198–3215. doi: 10.1175/JAS-D-12-0157.1.
  • Charnock, H. 1955. Wind stress on a water surface. Q. J. Royal Met. Soc. 81, 639–640. doi: 10.1002/qj.49708135027.
  • Curcic, M., Chen, S. S., and Özgökmen, T.M. 2016. Hurricane-induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico. Geophys. Res. Lett. 43, 2773–2781. doi: 10.1002/2015GL067619.
  • Desjardins, S., Mailhot, J. and Lalbeharry, R. 2000. Examination of the impact of a coupled atmospheric and ocean wave system. Part I: Atmospheric aspects. J. Phys. Oceanogr. 30, 402–401. doi: 10.1175/1520-0485(2000)030<0402:EOTIOA>2.0.CO;2.
  • Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. and Saltzman, E. S. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306. doi: 10.1029/2004GL019460.
  • Doyle, J. D. 1995. Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus 47, 766–788. doi: 10.1034/j.1600-0870.1995.00119.x.
  • Doyle, J. D. 2002. Coupled atmosphere–ocean wave simulations under high wind conditions. Mon. Weather Rev. 130, 3087–3099. doi:1 doi: 10.1175/1520-0493(2002)130<3087:CAOWSU>2.0.CO;2.
  • Drennan, W. M., Graber, H. C., Hauser, D. and Quentin, C. 2003. On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res. 108, 8062. doi: 10.1029/2000JC000715.
  • Drennan, W. M., Taylor, P. K. and Yelland, M. J. 2005. Parameterizing the sea surface roughness. J. Phys. Oceanogr. 35, 835–848. doi: 10.1175/JPO2704.1.
  • Dyer, A. J. and Hicks, B. B. 1970. Flux-gradient relationships in the constant flux layer. Q. J. R. Met. Soc. 96, 715–721. doi: 10.1002/qj.49709641012.
  • Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., and co-authors. 2013. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 43, 1589–1610. doi: 10.1175/JPO-D-12-0173.1.
  • Emanuel, K. A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605. doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
  • Emanuel, K. A. 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 52, 3969–3976. doi: 10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.
  • Emanuel, K., DesAutels, C., Holloway, C. and Korty, R. 2004. Environmental control of tropical cyclone intensity. J. Atmos. Sci. 61, 843–858. doi: 10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.
  • Fan, Y., Lin, S.-J., Held, I. M., Yu, Z. and Tolman, H. L. 2012. Global ocean surface wave simulation using a coupled atmosphere-wave model. J. Clim. 25, 6233–6252. doi: 10.1175/JCLI-D-11-00621.1.
  • Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. and Edson, J. B. 2003. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 16, 571–591. doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.
  • Gemmill, W., Katz, B. and Li, X. 2007. Daily Real-Time, Global Sea Surface Temperature - High-Resolution Analysis: RTG_SST_HR. NOAA, Camp Springs, MD.
  • Gentry, M. S. and Lackmann, G. M. 2010. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 138, 688–704. doi: 10.1175/2009MWR2976.1.
  • Green, B. W. and Zhang, F. 2013. Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Weather Rev. 141, 2308–2232. doi: 10.1175/MWR-D-12-00274.1.
  • Hersbach, H. 2011. Sea surface roughness and drag coefficient as functions of neutral wind speed. J. Phys. Oceanogr. 41, 247–251. doi: 10.1175/2010JPO4567.1.
  • Jacob, R., Larson, J. and Ong, E. 2005. M×N Communication and parallel interpolation in community climate system model version 3 using the model coupling toolkit. Int. J. High Perform. Comput. Appl 19, 293–307. doi: 10.1177/1094342005056116.
  • Janssen, P. A. E. M. 1989. Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19, 745–754. doi: 10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2.
  • Janssen, P. A. E. M. 1991. Quasi-linear theory of win-wave generation applied to wave forecasting. J. Phys. Oceanogr. 21, 1631–1642. doi: 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.
  • Janssen, P. A. E. M., Bidlot, J.-R., Abdalla, S. and Hersbach, H. 2005. Progress in ocean wave forecasting at ECMWF. ECMWF Tech. Memo. 478. [Available online https://www.ecmwf.int/sites/default/files/elibrary/2005/10187-progress-ocean-wave-forecasting-ecmwf.pdf]
  • Janssen, P. A. E. M., Saetra, O., Wettre, C. and Hersbach, H. 2004. Impact of the sea state on the atmosphere and ocean. Ann. Hydrogr. 3, 3.1–3.23.
  • Janssen, P. A. E. M. and Viterbo, P. 1996. Ocean waves and the atmospheric climate. J. Clim. 9, 1269–1287. doi: 10.1175/1520-0442(1996)009<1269:OWATAC>2.0.CO;2.
  • Jarosz, E., Mitchell, D. A., Wang, D. W. and Teague, W. J. 2007. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science 315, 1707–1709. doi: 10.1126/science.1136466.
  • Järvenoja, S. and Tuomi, L. 2002. Coupled atmosphere-wave model for FMI and FIMR. Hirlam Newslett. 40, 9–22.
  • Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P. and co-authors. 2012. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 140, 898–918. doi: 10.1175/MWR-D-11-00056.1.
  • Joint GODAE OceanView/WGNE workshop on short- to medium-range coupled prediction for the atmosphere-wave-sea-ice-ocean. Status, needs and challenges, 19–21 March 2013. [Available online http://www.godae-oceanview.org/outreach/meetings-workshops/taskteam-meetings/coupled-prediction-workshop-gov-wgne-2013/ (accessed 22 July 2015)].
  • Kang, J.-Y. and Kwon, Y. C. 2016. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula. J. Atmos. Sol.-Terr. Phys. 146, 1–15. doi: 10.1016/j.jastp.2016.04.017.
  • Kim, T. and Jin, E. K. 2016. Impact of an interactive ocean on numerical weather prediction: A case of a local heavy snowfall event in eastern Korea. J. Geophys. Res. Atmos. 121, 8243–8253. doi: 10.1002/2016JD024763.
  • Kurihara, Y., Bender, M. A., Tuleya, R. E. and Ross, R. J. 1995. Improvements in the GFDL hurricane prediction system. Mon. Weather Rev. 123, 2791–2801. doi: 10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.
  • Kwon, Y. C. and Kim, T. 2017. Impact of air-sea exchange coefficients on the structure and intensity of tropical cyclones. Terr. Atmos. Ocean. Sci. 28, 345–356. doi: 10.3319/TAO.2016.11.16.01.
  • Lalbeharry, R., Mailhot, J., Desjardins, S., and and Wilson, L. 2000. Examination of the impact of a coupled atmospheric and ocean wave system. Part II: Ocean wave aspects. J. Phys. Oceanogr. 30, 402–415. doi: 10.1175/1520-0485(2000)030<0402:EOTIOA>2.0.CO;2.
  • Large, W. G. and Pond, S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324–336. doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.2.CO;2.
  • Large, W. G. and Yeager, S. G. 2009. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. 33, 341–364. doi: 10.1007/s00382-008-0441-3.
  • Larson, J., Jacob, R. and Ong, E. 2005. The Model Coupling Toolkit: A new Fortran90 toolkit for building multi-physics parallel coupled models. Int. J. High Perform. Comput. Appl. 19, 277–292. doi: 10.1177/1094342005056115.
  • Lionello, P., Malguzzi, P. and Buzzi, A. 1998. Coupling between the atmospheric circulation and ocean wave field: an idealized case. J. Phys. Oceanogr. 28, 161–177. doi: 10.1175/1520-0485(1998)028<0262:CBTACA>2.0.CO;2.
  • Liu, B., Guan, C., Xie, L. and Zhao, D. 2012. An investigation of the effects of wave state and sea spray on an idealized typhoon using an air-sea coupled modeling system. Adv. Atmos. Sci. 29, 391–406. doi: 10.1007/s00376-011-1059-7.
  • Liu, B., Liu, H., Xie, L., Guan, C. and Zhao, D. 2010. A coupled atmosphere–wave–ocean modeling system: simulation of the intensity of an idealized tropical cyclone. Mon. Weather Rev. 139, 132. 100827132423068, doi: 10.1175/2010MWR3396.1.
  • Madsen, O. S., Poon, Y. K. and Graber, H. C. 1988. Spectral wave attenuation by bottom friction: Theory, Proc. ASCE 21st Int. Conf. Coastal Engineering (ICCE), Malaga, Spain, ASCE, 492–504, doi: 10.1061/9780872626874.035.
  • Marks, F. and Shay, L. K. 1998. Landfalling tropical cyclones: forecast problems and associated research opportunities. Bull. Am. Meteorol. Soc. 79, 305–323. doi: 10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.
  • Molinari, J. and Dudek, M. 1992. Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon. Weather Rev. 120, 326–344. doi: 10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2
  • Montgomery, M. T., Smith, R. K. and Nguyen, S. V. 2010. Sensitivity of tropical-cyclone models to the surface drag coefficient. Q. J. R. Meteorol. Soc. 136, 1945–1953. doi: 10.1002/qj.702.
  • Moon, I.-J., Ginis, I. and Hara, T. 2004. Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett. 31, L20302. doi: 10.1029/2004GL020988.
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce 2000. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. https://doi.org/10.5065/D6M043C6, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo. (Updated daily) Accessed 7 Feb. 2016.
  • Olabarrieta, M., Warner, J. C., Armstrong, B., Zambon, J. B. and He, R. 2012. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modell. 43–44, 112–137. doi: 10.1016/j-ocemod.2011.12.008.
  • Oost, W. A., Komen, G. J., Jacobs, C. M. J. and Van Oort, C. 2002. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound. Lay. Meteorol. 103, 409–438. doi: 10.1023/A:1014913624535.
  • Ooyama, K. 1969. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40. doi: 10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
  • Paulson, C. A. 1970. The Mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. 9, 857–861. doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  • Powell, M. D., Vickery, P. J. and Reinhold, T. A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283. doi: 10.1038/nature01481.
  • Renault, L., Chiggiato, J., Warner, J. C., Gomez, M., Vizoso, G. and Tintoré, J. 2012. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea. J. Geophys. Res. 117, C09019. doi: 10.1029/2012JC007924.
  • Rhome, J. R., Sisko, C. A. and Knabb, R. D. 2006. On the calculation of vertical shear: An operational perspective. Preprints: 27th Conference on Hurricanes and Tropical Meteorology. https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108724.htm
  • Rogers, R., Chen, S., Tenerelli, J. and Willoughby, H. 2003. A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Weather Rev. 131, 1577–1599. doi: 10.1175/2546.1.
  • Rotunno, R. and Emanuel, K. A. 1987. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561. doi: 10.1175/1520-0469(1987)044<0542:AAITFT>2.0CO;2.
  • Sattler, K., J., She, B. H., Sass, L., Laursen, L., Landberg, M Nielsen. and co-authors. 2002. Enhanced description of the wind climate in Denmark for determination of wind resources, Scientific Report, 02-09, Danish Meteorological Institute.
  • Skamarock, W., J. B., Klemp, J., Dudhia, D. O., Gill, D. M., Barker, M. G Duda. and co-authors. 2008. A description of the advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-4751STR. Natl. Cent. For Atmos. Res., Boulder, Colo., doi: 10.5065/D68S4MVH.
  • Stewart, R. W. 1974. The air-sea momentum exchange. Boundary-Layer Meteorol. 6, 151–167. doi: 10.1007/BF00232481.
  • Taylor, P. K. and Yelland, M. J. 2001. The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr. 31, 572–590. doi: 10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.
  • Toffoli, A., Loffredo, L., Le Roy, P., Lefevre, J.-M. and Babanin, A. V. 2012. On the variability of sea drag in finite water depth. J. Geophys. Res. 117, C00J25, doi: 10.1029/2011JC007857.
  • Tolman, H. L. 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 21, 782–797. doi: 10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2.
  • Wallace, J. M., Mitchell, T. P. and Deser, C. 1989. The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Clim. 2, 1492–1499. doi: 10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.
  • Wang, Y. 1998. On the bogusing of tropical cyclones in numerical models: The influence of vertical structure. Meteorol. Atmos. Phys. 65, 153–170.
  • Warner, J. C., Armstrong, B., He, R. and Zambon, J. B. 2010. Development of a coupled ocean-atmosphere-wave sediment transport (COAWST) modeling system. Ocean Model. 35, 230–244. doi: 10.1016/j.ocemod.2010.07.010.
  • Warner, J. C., Perlin, N. and Skyllingstad, E. D. 2008. Using the model coupling toolkit to couple earth system models. Environ. Model. Softw. 23, 1240–1249. doi: 10.1016/j.envsoft.2008.03.002.
  • Webb, E. K. 1970. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Met. Soc. 96, 67–90. doi: 10.1002/qj.49709640708.
  • Weber, S. L., von Storch, H., Viterbo, P. and Zambresky, L. 1993. Coupling an ocean wave model to an atmospheric general circulation model. Clim. Dyn. 9, 63–61. doi: 10.1007/BF00210009.
  • Weidinger, T., Pinto, J. and Horvath, L. 2000. Effects of uncertainties in universal functions, roughness length, and displacement height on the calculation of surface layer fluxes. Meteorol. Z. 9, 139–154.
  • Wu, C.-C., Bender, M. and Kurihara, Y. 2000. Typhoon forecasts with the GFDL hurricane model: Forecast skill and comparison of predictions using AVN and NOGAPS global analyses. J. Meteorol. Soc. Jpn. 78, 777–788. doi: 10.2151/jmsj1965.78.6_777.
  • Wu, C.-C., Chou, K., Wang, Y. and Kuo, Y. 2006. Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci. 63, 2383–2395. doi: 10.1175/JAS3743.1.
  • Wu, J. 1980. Wind-stress coefficients over sea surface near neutral conditions: A revisit. J. Phys. Oceanogr. 10, 727–740. doi: 10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2.
  • Zambon, J. B., He, R. and Warner, J. C. 2014. Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn. 64, 1535–1554. doi: 10.1007/s10236-014-0777-7.
  • Zambon, J. B., He, R. and Warner, J. C. 2014b. Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall. Geophys. Res. Lett. 2014, GL061357. doi: 10.1002/2014GL061357. http://onlinelibrary.wiley.com/doi/10.1002/2014GL061357/full.
  • Zhang, D. and Anthes, R. A. 1982. A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 21, 1594–1609. doi: 10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.
  • Zhang, Y. and Perrie, W. 2001. Feedback mechanism for the atmosphere and ocean surface. Bound. Lay. Meteorol 100, 321–348. doi: 10.1023/A:1018996505248.