556
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Large-scale secondary circulations in a limited area model – the impact of lateral boundaries and resolution

ORCID Icon, ORCID Icon &

References

  • Becker, N., Ulbrich, U. and Klein, R. 2015. Systematic large-scale secondary circulations in a regional climate model. Geophys. Res. Lett. 42, 4142–4149. DOI: 10.1002/2015GL063955.
  • Bhaskaran, B., Jones, R. G., Murphy, J. M. and Noguer, M. 1996. Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim. Dynam. 12, 573–587. DOI: 10.1007/BF00216267.
  • Broccoli, A. J. and Manabe, S. 1992. The effects of orography on midlatitude northern hemisphere dry climates. J. Climate. 5, 1181–1201. DOI: 10.1175/1520-0442(1992)005 < 1181:TEOOOM>2.0.CO;2.
  • Costa, A. C., Santos, J. A. and Pinto, J. G. 2012. Climate change scenarios for precipitation extremes in Portugal. Theor. Appl. Climatol. 108, 217–234. DOI: 10.1007/s00704-011-0528-3.
  • Davies, H. C. 1976. A lateral boundary formulation for multi-level prediction models. Q. J. Roy. Meteor. Soc. 102, 405–418.
  • Denis, B, Laprise, R., Caya, D. and Côté, J. 2002. Downscaling ability of one-way nested regional climate models: the big-brother experiment. Clim. Dyn. 18, 627–646. DOI: 10.1007/s00382-001-0210-0.
  • Denis, B., Laprise, R. and Caya, D. 2003. Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Clim. Dyn. 20, 107–126. DOI: 10.1007/s00382-002-0264-6.
  • Diaconescu, E. P. and Laprise, R. 2013. Can added value be expected in RCM-simulated large scales? Clim. Dyn. 41, 1769–1800. DOI: 10.1007/s00382-012-1649-9.
  • Doms, G., Förstner, J., Heise, R., Herzog, H.-J., Mironov, D. and co-authors. 2011. A Description of the Nonhydrostatic Regional COSMO Model – Part II: Physical Parameterization. Deutscher Wetterdienst, Offenbach, Germany.
  • Feser, F., Rockel, B., von Storch, H., Winterfeldt, J. and Zahn, M. 2011. Regional climate models add value to global model data: a review and selected examples. Bull. Amer. Meteor. Soc. 92, 1181–1192. DOI: 10.1175/2011BAMS3061.1.
  • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B. and co-authors. 2012. RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res. 52, 7–29. DOI: 10.3354/cr01018.
  • Goswami, P., Shivappa, H. and Goud, S. 2012. Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Met. Apps. 19, 170–178. DOI: 10.1002/met.253.
  • Hollweg, H. D., Boehm, U., Fast, I., Hennemuth, B. Keuler, K. and co-authors. 2008. Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. M & D Tech. Rep. 3, 154.
  • Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., De Castro, M, and co-authors. 2007. An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim. Chang. 81, 31–52. DOI: 10.1007/s10584-006-9213-4.
  • Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B. and co-authors. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578. DOI: 10.1007/s10113-013-0499-2.
  • Jaeger, E. B., Anders, I., Lüthi, D., Rockel, B., Schär, C. and co-authors. 2008. Analysis of ERA40‐driven CLM simulations for Europe. Metz. 17, 349–367. DOI: 10.1127/0941-2948/2008/0301.
  • Jones, R. G., Murphy, J. M. and Noguer, M. 1995. Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. QJ. Royal Met. Soc. 121, 1413–1449. DOI: 10.1002/qj.49712353802.
  • Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J. and co-authors. 2006. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate 19, 3952–3972. DOI: 10.1175/JCLI3827.1.
  • Kljun, N., Sprenger, M. and Schär, C. 2001. Frontal modification and lee cyclogenesis in the Alps: a case study using the ALPEX reanalysis data set. Meteorol. Atmos. Phys. 78, 89–105. DOI: 10.1007/s007030170008.
  • Koltzow, M., Iversen, T. and Haugen, J. E. 2008. Extended big-brother experiments: the role of lateral boundary data quality and size of integration domain in regional climate modelling. Tellus A 60, 398–410. DOI: 10.1111/j.1600-0870.2008.00309.x.
  • Kunz, M., Mohr, S., Rauthe, M., Lux, R. and Kottmeier, C. 2010. Assessment of extreme wind speeds from regional climate models-part 1: estimation of return values and their evaluation. Nat. Hazards Earth Syst. Sci. 10, 907. DOI: 10.5194/nhess-10-2010.
  • Larsen, M. A. D., Thejll, P., Christensen, J. H., Refsgaard, J. C. and Jensen, K. H. 2013. On the role of domain size and resolution in the simulations with the HIRHAM region climate model. Clim. Dyn. 40, 2903–2918. DOI: 10.1007/s00382-012-1513-y.
  • Lorenzo, M. N., Taboada, J. J. and Gimeno, L. 2008. Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int. J. Climatol. 28, 1493–1505. DOI: 10.1002/joc.1646.
  • Matte, D., Laprise, R., Thériault, J. M. and Lucas-Picher, P. 2017. Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Clim. Dyn. 49, 563–574. DOI: 10.1007/s00382-016-3358-2.
  • Mazza, E., Ulbrich, U. and Klein, R. 2017. The tropical transition of the October 1996 medicane in the western Mediterranean Sea: a warm seclusion event. Mon. Wea. Rev. 145, 2575–2595. DOI: 10.1175/MWR-D-16-0474.1.
  • Miguez-Macho, G., Stenchikov, G. L. and Robock, A. 2004. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res.-Atmos. 109, D13104. DOI: 10.1029/2003JD004495.
  • Noyelle, R., Ulbrich, U., Becker, N. and Meredith, E. P. 2018. Assessing the impact of SSTs on a simulated medicane using ensemble simulations. Nat. Hazards Earth Syst. Sci. Discuss. DOI: 10.5194/nhess-2018-230, in review.
  • Pardowitz, T., Befort, D. J., Leckebusch, G. C. and Ulbrich, U. 2016. Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Metz. 25, 531–541. DOI: 10.1127/metz/2016/0582.
  • Radu, R., Déqué, M. and Somot, S. 2008. Spectral nudging in a spectral regional climate model. Tellus A 60, 898–910. DOI: 10.1111/j.1600-0870.2008.00341.x.
  • Raymond, W. H. 1988. High-order low-pass implicit tangent filters for use in finite area calculations. Mon. Wea. Rev. 116, 2132–2141. DOI: 10.1175/1520-0493(1988)116 < 2132:HOLPIT >2.0.CO;2.
  • Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A. and co-authors. 2014. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. Forest Sci. 71, 211–225. DOI: 10.1007/s13595-013-0306-8.
  • Rockel, B., Castro, C. L., Pielke, R. A., V., Storch, H. and Leoncini, G. 2008. Dynamical downscaling: assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res.-Atmos. 113, D21107. DOI: 10.1029/2007JD009461.
  • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S. and co-authors. 2006. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate. 19, 3771–3791. DOI: 10.1175/JCLI3824.1.
  • von Storch, H., Langenberg, H. and Feser, F. 2000. A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev. 128, 3664–3673. DOI: 10.1175/1520-0493(2000)128h3664:ASNTFDi2.0.CO;2.