1,642
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model

, &

References

  • Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J. and co-authors. 2017. The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Weather Rev. 145, 1919–1935. doi:10.1175/MWR-D-16-0417.1
  • Berry, E. X. and Reinhardt, R. L. 1974. An analysis of cloud drop growth by collection part II. Single initial distributions. J. Atmos. Sci. 31, 1825–1831. doi:10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2
  • Bigg, E. K. 1953. The supercooling of water. Proc. Phys. Soc. B 66, 688–694. doi:10.1088/0370-1301/66/8/309
  • Brousseau, P., Seity, Y., Ricard, D. and Léger, J. 2016. Improvement of the forecast of convective activity from the AROME-France system. Q. J. R. Meteorol. Soc. 142, 2231–2243. doi:10.1002/qj.2822
  • Cober, S. G. and List, R. 1993. Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci. 50, 1591–1609. doi:10.1175/1520-0469(1993)050<1591:MOTHAM>2.0.CO;2
  • Cohard, J.-M. and Pinty, J.-P. 2000a. A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Q. J. R. Meteorol. Soc. 126, 1815–1842. doi:10.1256/smsqj.56613
  • Cohard, J.-M. and Pinty, J.-P. 2000b. A comprehensive two-moment warm microphysical bulk scheme. II: 2D experiments with a non-hydrostatic model. Q. J. R. Meteorol. Soc. 126, 1843–1859. doi:10.1256/smsqj.56614
  • Cooper, W. A. 1986. Ice Initiation in Natural Clouds. In Precipitation Enhancement—a Scientific Challenge (ed. R. R. Braham). American Meteorological Society, Boston, MA, pp. 29–32.
  • Fan, J., Ghan, S., Ovchinnikov, M., Liu, X., Rasch, P. J. and co-authors. 2011. Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res. 116, D00T07. doi:10.1029/2010JD015375
  • Farley, R. D., Price, P. A., Orville, H. D. and Hirsch, J. H. 1989. On the numerical simulation of graupel/hail initiation via the riming of snow in bulk water microphysical cloud models. J. Appl. Meteor. 28, 1128–1131. doi:10.1175/1520-0450(1989)028<1128:OTNSOG>2.0.CO;2
  • Ferrier, B. S. 1994. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci. 51, 249–280. doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2
  • Furtado, K., Field, P. R., Boutle, I. A., Morcrette, C. J. and Wilkinson, J. M. 2016. A physically-based subgrid parameterization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci. 73, 279–291. doi:10.1175/JAS-D-15-0021.1
  • Hall, W. D. 1980. A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci. 37, 2486–2507. doi:10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2
  • Intrieri, J. M., Fairall, C. W., Shupe, M. D., Persson, P. O. G., Andreas, E. L., Guest, P. S. and Moritz, R. E. 2002. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 107, 8039. doi:10.1029/2000JC000439
  • Khairoutdinov, M. and Kogan, Y. 2000. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather Rev. 128, 229–243. doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2
  • Korolev A. V., Isaac, G. A., Cober, S. G., Strapp, J. W. and Hallett, J. 2003. Mirophysical characterization of mixed-phase clouds. Q. J. Roy. Meteorol. Soc. 129, 39–65. doi:10.1256/qj.01.204
  • Korolev, A. and Field, P. R. 2008. The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci. 65, 66–86. doi:10.1175/2007JAS2355.1
  • Kristjánsson, J. E., Edwards, J. M. and Mitchell, D. L. 2000. Impact of a new scheme for optical properties of ice crystals on climates of two GCMs. J. Geophys. Res. 105, 10063–10079. doi:10.1029/2000JD900015
  • Lin, Y.-L., Farley, R. D. and Orville, H. D. 1983. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 22, 1065–1092. doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  • Liu, C., Ikeda, K., Thompson, G., Rasmussen, R. and Dudhia, J. 2011. High-resolution simulations of wintertime precipitation in the Colorado Headwaters Region: Sensitivity to physics parameterizations. Mon. Weather Rev. 139, 3533–3553. doi:10.1175/MWR-D-11-00009.1
  • Locatelli, J. D. and Hobbs, P. V. 1974. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 79, 2185–2197. doi:10.1029/JC079i015p02185
  • Lohmann, U. 2004. Can anthropogenic aerosols decrease the snowfall rate? J. Atmos. Sci. 61, 2457–2468. doi:10.1175/1520-0469(2004)061<2457:CAADTS>2.0.CO;2
  • Ma, H.-Y., Xie, S., Klein, S. A., Williams, K. D., Boyle and Coauthors. 2014. On the correspondence between mean forecast errors and climate errors in CMIP5 Models. J. Climate 27, 1781–1798. doi:10.1175/JCLI-D-13-00474.1
  • Marshall, J. S. and Palmer, W. M. K. 1948. The distribution of raindrops with size. J. Meteorol. 5, 165–166. doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  • Meyers, M. P., DeMott, P. J. and Cotton, W. R. 1992. New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol. 31, 708–721. doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
  • Morrison, H., Thompson, G. and Tatarskii, V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 137, 991–1007. doi:10.1175/2008MWR2556.1
  • Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A. Ø., Lindskog, M. and co-authors. 2017. AROME-MetCoOp: A Nordic convective-scale operational weather prediction model. Weather Forecast. 32, 609–627. doi:10.1175/WAF-D-16-0099.1
  • Musil, D. J. 1970. Computer modeling of hailstone growth in feeder clouds. J. Atmos. Sci. 27, 474–482. doi:10.1175/1520-0469(1970)027<0474:CMOHGI>2.0.CO;2
  • Nelson, S. P. 1983. The influence of storm flow structure on hail growth. J. Atmos. Sci. 40, 1965–1983. doi:10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2
  • Nygaard, B. E. K., Kristjánsson, J. E. and Makkonen, L. 2011. Prediction of in-cloud icing conditions at ground level using the WRF Model. J. Appl. Meteorol. Climatol. 50, 2445–2459. doi:10.1175/JAMC-D-11-054.1
  • Reisner, J., Rasmussen, R. M. and Bruintjes, R. T. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quarterly Journal of the Royal Meteorological Society. Available at: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49712454804.
  • Rutledge, S. A. and Hobbs, P. V. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci. 41, 2949–2972. doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2
  • Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P. and co-authors. 2011. The AROME-France convective-scale operational model. Mon. Weather Rev. 139, 976–991. doi:10.1175/2010MWR3425.1
  • Shupe, M. D. and Intrieri, J. M. 2004. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 17, 616–628. doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
  • Stoelinga, M. T. and co-authors. 2003. Improvement of microphysical parameterization through observational verification experiment. Bulletin of the American Meteorological Society 84, 1807–1826. doi:10.1175/BAMS-84-12-1807
  • Tan, I., Storelvmo, T. and Zelinka, M. D. 2016. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227. doi:10.1126/science.aad5300
  • Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R. and co-authors. 2018. The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geosci. Model Dev. 11, 257–281. doi:10.5194/gmd-11-257-2018
  • Thompson, G. and Eidhammer, T. 2014. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 71, 3636–3658. doi:10.1175/JAS-D-13-0305.1
  • Thompson, G., Field, P. R., Rasmussen, R. M. and Hall, W. D. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 136, 5095–5115. doi:10.1175/2008MWR2387.1
  • Thompson, G., Rasmussen, R. M. and Manning, K. 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev. 132, 519–542. doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
  • Verlinde, J., Flatau, P. J. and Cotton, W. R. 1990. Analytical so- lutions to the collection growth equation: Comparison with approximate methods and application to the cloud micro- physics parameterization schemes. J. Atmos. Sci. 47, 2871–2880. doi:10.1175/1520-0469(1990)047<2871:ASTTCG>2.0.CO;2
  • Waldvogel, A. 1974. The N0 jump of raindrop spectra. J. Atmos. Sci. 31, 1067–1078. doi:10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2
  • Wang, P. K. and Ji, W. 2000. Collision efficiencies of ice crystals at low–intermediate reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci. 57, 1001–1009. doi:10.1175/1520-0469(2000)057<1001:CEOICA>2.0.CO;2
  • Wisner, C., Orville, H. D. and Myers, C. 1972. A numerical model of a hail-bearing cloud. J. Atmos. Sci. 29, 1160–1181. doi:10.1175/1520-0469(1972)029<1160:ANMOAH>2.0.CO;2