2,601
Views
12
CrossRef citations to date
0
Altmetric
Research Article

The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1-26 | Received 14 Jun 2019, Accepted 20 Nov 2019, Published online: 03 Feb 2020

References

  • Azad, R. and Sorteberg, A. 2009. A diagnosis of warm-core and cold-core extratropical cyclone development using the Zwack–Okossi equation. Atmos. Sci. Lett. 10, 220–225.
  • Azad, R. and Sorteberg, A. 2014. The vorticity budgets of North Atlantic winter extratropical cyclone life cycles in MERRA reanalysis. Part I: development phase. J. Atmos. Sci. 71, 3109–3128. doi:10.1175/JAS-D-13-0267.1
  • Baatsen, M., Haarsma, R. J., Van Delden, A. J. and De Vries, H. 2015. Severe autumn storms in future western Europe with a warmer Atlantic ocean. Clim. Dyn. 45, 949–964. doi:10.1007/s00382-014-2329-8
  • Bentley, A. M., Bosart, L. F. and Keyser, D. 2019. A climatology of extratropical cyclones leading to extreme weather events over central and eastern North America. Mon. Wea. Rev. 147, 1471–1490. doi:10.1175/MWR-D-18-0453.1
  • Bieli, M., Camargo, S. J., Sobel, A. H., Evans, J. L. and Hall, T. 2019. A global climatology of extratropical transition part I: characteristics across basins. J. Climate. 32, 3557–3582. doi:10.1175/JCLI-D-17-0518.1
  • Browning, K., Panagi, P. and Vaughan, G. 1998. Analysis of an ex-tropical cyclone after its reintensification as a warm-core extratropical cyclone. Q. J. R. Meteorol. Soc. 124, 2329–2356. doi:10.1002/qj.49712455108
  • Davis, C. A., Jones, S. C. and Riemer, M. 2008. Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci. 65, 714–736. doi:10.1175/2007JAS2488.1
  • DeHart, J. C., Houze, R. A. Jr. and Rogers, R. F. 2014. Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci. 71, 2713–2732. doi:10.1175/JAS-D-13-0298.1
  • DiMego, G. J. and Bosart, L. F. 1982. The transformation of Tropical Storm Agnes into an extratropical cyclone. Part II: moisture, vorticity and kinetic energy budgets. Mon. Wea. Rev. 110, 412–433. doi:10.1175/1520-0493(1982)110<0412:TTOTSA>2.0.CO;2
  • Evans, C., Wood, K. M., Aberson, S. D., Archambault, H. M., Milrad, S. M. and co-authors. 2017. The extratropical transition of tropical cyclones. Part I: cyclone evolution and direct impacts. Mon. Wea. Rev. 145, 4317–4344. doi:10.1175/MWR-D-17-0027.1
  • Evans, J. L. and Hart, R. E. 2003. Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev. 131, 909–925. doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2
  • Feser, F., Schubert-Frisius, M., von Storch, H., Zahn, M., Barcikowska, M. and co-authors. 2015. Hurricane Gonzalo and its extratropical transition to a strong European storm. Bull. Amer. Meteor. Soc. 96, S51–S55. doi:10.1175/BAMS-D-15-00122.1
  • Foerster, A. M., Bell, M. M., Harr, P. A. and Jones, S. C. 2014. Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev. 142, 3372–3392. doi:10.1175/MWR-D-13-00313.1
  • Grams, C. M. and Blumer, S. R. 2015. European high-impact weather caused by the downstream response to the extratropical transition of North Atlantic Hurricane Katia (2011). Geophys. Res. Lett. 42, 8738–8748. doi:10.1002/2015GL066253
  • Grams, C. M., Jones, S. C., Davis, C. A., Harr, P. A. and Weissmann, M. 2013. The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: upper-level ridgebuilding and modification of the jet. Q. J. R. Meteorol. Soc. 139, 2148–2164. doi:10.1002/qj.2091
  • Haarsma, R. J., Hazeleger, W., Severijns, C., De Vries, H., Sterl, A. and co-authors. 2013. More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett. 40, 1783–1788. doi:10.1002/grl.50360
  • Hart, R. 2018. Cyclone phase evolution: analyses & forecasts. Online at: http://moe.met.fsu.edu/cyclonephase/archive/2017/gifs/ophelia2017 [accessed 20 May 2019]
  • Hart, R. E. 2003. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev. 131, 585–616. doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2
  • Hart, R. E. and Evans, J. L. 2001. A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate 14, 546–564. doi:10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2
  • Hart, R. E., Evans, J. L. and Evans, C. 2006. Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: factors determining posttransition evolution. Mon. Wea. Rev. 134, 553–578. doi:10.1175/MWR3082.1
  • Hawcroft, M., Walsh, E., Hodges, K. and Zappa, G. 2018. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett. 13, 124006. doi:10.1088/1748-9326/aaed59
  • Hodges, K. 1995. Feature tracking on the unit sphere. Mon. Wea. Rev. 123, 3458–3465. doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
  • Hodges, K. and Klingaman, N. 2019. Prediction errors of tropical cyclones in the Western North Pacific in the met office global forecast model. Wea. Forecasting 34, 1189–1209. doi:10.1175/WAF-D-19-0005.1
  • Hodges, K. I. 1994. A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev. 122, 2573–2586. doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2
  • Keller, J. H., Grams, C. M., Riemer, M., Archambault, H. M., Bosart, L. and co-authors. 2018. The Extratropical Transition of Tropical Cyclones Part II: interaction with the midlatitude flow, downstream impacts, and implications for predictability. Mon. Wea. Rev. 147, 1077–1106. doi:10.1175/MWR-D-17-0329.1
  • Klein, P. M., Harr, P. A. and Elsberry, R. L. 2002. Extratropical transition of western North Pacific tropical cyclones: midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev. 130, 2240–2259. doi:10.1175/1520-0493(2002)130<2240:ETOWNP>2.0.CO;2
  • Leroux, M.-D., Plu, M., Barbary, D., Roux, F. and Arbogast, P. 2013. Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci. 70, 2547–2565. doi:10.1175/JAS-D-12-0293.1
  • Liu, M., Vecchi, G. A., Smith, J. A. and Murakami, H. 2017. The present-day simulation and twenty-first-century projection of the climatology of extratropical transition in the North Atlantic. J. Climate 30, 2739–2756. doi:10.1175/JCLI-D-16-0352.1
  • Milrad, S. M., Atallah, E. H. and Gyakum, J. R. 2009. Dynamical and precipitation structures of poleward-moving tropical cyclones in eastern Canada, 1979–2005. Mon. Wea. Rev. 137, 836–851. doi:10.1175/2008MWR2578.1
  • Palmén, E. 1958. Vertical circulation and release of kinetic energy during the development of Hurricane Hazel into an extratropical storm. Tellus 10, 1–23.
  • Räisänen, J. 1995. Factors affecting synoptic-scale vertical motions: a statistical study using a generalized omega equation. Mon. Wea. Rev. 123, 2447–2460. doi:10.1175/1520-0493(1995)123<2447:FASSVM>2.0.CO;2
  • Räisänen, J. 1997. Height tendency diagnostics using a generalized omega equation, the vorticity equation, and a nonlinear balance equation. Mon. Wea. Rev. 125, 1577–1597. doi:10.1175/1520-0493(1997)125<1577:HTDUAG>2.0.CO;2
  • Rantanen, M., Räisänen, J., Lento, J., Stepanyuk, O., Räty, O. and co-authors. 2017. OZO v. 1.0: software for solving a generalised omega equation and the Zwack–Okossi height tendency equation using WRF model output. Geosci. Model Dev. 10, 827–841. doi:10.5194/gmd-10-827-2017
  • Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S. and co-authors. 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20, 5473–5496. doi:10.1175/2007JCLI1824.1
  • Ritchie, E. A. and Elsberry, R. L. 2007. Simulations of the extratropical transition of tropical cyclones: phasing between the upper-level trough and tropical cyclones. Mon. Wea. Rev. 135, 862–876. doi:10.1175/MWR3303.1
  • Rolfson, D. M. and Smith, P. J. 1996. A composite diagnosis of synoptic-scale extratropical cyclone development over the United States. Mon. Wea. Rev. 124, 1084–1099. doi:10.1175/1520-0493(1996)124<1084:ACDOSS>2.0.CO;2
  • Seiler, C. 2019. A Climatological Assessment of Intense Extratropical Cyclones from the Potential Vorticity Perspective. J. Climate 32, 2369–2380. doi:10.1175/JCLI-D-18-0461.1
  • Sekioka, M. 1956. A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle latitudes. J. Meteorol. Soc. 34, 276–287. doi:10.2151/jmsj1923.34.5_276
  • Shapiro, M. A. and Keyser, D. 1990. Fronts, jet streams and the tropopause, in: Extratropical Cyclones. Springer, New York, pp. 167–191.
  • Sinclair, V. A. and Dacre, H. F. 2019. Which extra-tropical cyclones contribute most to the transport of moisture in the Southern Hemisphere? J. Geophys. Res. Atmos. 124, 2525–2545. doi:10.1029/2018JD028766
  • Stepanyuk, O., Räisänen, J., Sinclair, V. A. and Järvinen, H. 2017. Factors affecting atmospheric vertical motions as analyzed with a generalized omega equation and the OpenIFS model. Tellus A: Dynamic Meteorology and Oceanography 69, 1271563. doi:10.1080/16000870.2016.1271563
  • Stewart, S. R. 2018. Tropical Cyclone Report: Hurricane Ophelia, 9–15 October 2017, National Hurricane Center.
  • Thorncroft, C. and Jones, S. C. 2000. The extratropical transitions of Hurricanes Felix and Iris in 1995. Mon. Wea. Rev. 128, 947–972. doi:10.1175/1520-0493(2000)128<0947:TETOHF>2.0.CO;2
  • Willison, J., Robinson, W. A. and Lackmann, G. M. 2013. The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci. 70, 2234–2250. doi:10.1175/JAS-D-12-0226.1
  • Yamaguchi, M., Ishida, J., Sato, H. and Nakagawa, M. 2017. WGNE intercomparison of tropical cyclone forecasts by operational NWP models: a quarter century and beyond. Bull. Amer. Meteor. Soc. 98, 2337–2349. doi:10.1175/BAMS-D-16-0133.1
  • Zappa, G., Shaffrey, L. C. and Hodges, K. I. 2013. The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate 26, 5379–5396. doi:10.1175/JCLI-D-12-00501.1