1,128
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Distributions and light absorption property of water soluble organic carbon in a typical temperate glacier, southeastern Tibetan Plateau

, , &
Pages 1-15 | Received 01 Aug 2017, Accepted 17 Apr 2018, Published online: 01 Jun 2018

References

  • Anderson, C. H., Dibb, J. E., Griffin, R. J., Hagler, G. S. W. and Bergin, M. H. 2008. Atmospheric water-soluble organic carbon measurements at Summit, Greenland. Atmos. Environ. 42, 5612–5621. DOI:10.1016/j.atmosenv.2008.03.006.
  • Andreae, M. O. and Gelencser, A. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148. DOI:10.5194/acp-6-3131-2006.
  • Anesio, A. M. and Laybourn-Parry, J. 2012. Glaciers and ice sheets as a biome. Trends Ecol. Evol. (Amst.). 27, 219–225. DOI:10.1016/j.tree.2011.09.012.
  • Antony, R., Mahalinganathan, K., Thamban, M. and Nair, S. 2011. Organic carbon in Antarctic snow: spatial trends and possible sources. Environ. Sci. Technol. 45, 9944–9950.DOI: 10.1021/es203512t.
  • Bond, T. C. and Bergstrom, R. W. 2006. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40, 27–67. DOI:10.1080/02786820500421521.
  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M. and Berntsen, T. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res: Atmos. 118, 5380–5552. DOI:10.1002/jgrd.50171.
  • Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S. and co-authors. 2014. Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian out flow intercepted over the Indian Ocean. J. Geophys. Res: Atmos. 119, 11743–11759. DOI:10.1002/2014JD022127.
  • Chen, Y. and Bond, T. C. 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10, 1773–1787. DOI:acp-10-5965-2010/acp-10-1773-2010.
  • Cheng, Y., He, K. B., Zheng, M., Duan, F. K., Du, Z. Y. and co-authors. 2011. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos. Chem. Phys. 11, 11497–11510. DOI:acp-10-5965-2010/acp-11-11497-2011.
  • Cong, Z. Y., Kang, S. C., Kawamura, K., Liu, B., Wan, X. and co-authors. 2015a. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmos. Chem. Phys. 15, 1573–1584. DOI:acp-10-5965-2010/acpd-14-25051-2014.
  • Cong, Z. Y., Kawamura, K., Kang, S. C. and Fu, P. 2015b. Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Sci. Rep. 5, 9580. DOI:10.1038/srep09580.
  • Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L. and Brandt, R. E. 2013. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res: Atmos. 118, 5553–5569. DOI:10.1002/jgrd.50235.
  • Domine, F. and Shepson, P. B. 2002. Air-snow interactions and atmospheric chemistry. Science. 297, 1506–1510. DOI:10.1126/science.1074610.
  • Dong, Z., Kang, S., Qin, D., Qin, X., Yan, F. and co-authors. 2017. Temporal and diurnal analysis of trace elements in the cryospheric water at remote Laohugou basin in northeast Tibetan Plateau. Chemosphere. 171, 386–398. DOI:10.1016/j.chemosphere.2016.12.088.
  • Du, J. K., He, Y. Q., Li, S., Wang, S. J. and Niu, H. W. 2015. Mass balance of a typical monsoonal temperate glacier in Hengduan Mountains Region. Acta Geographica Sinica. 70, 1415–1422. (In Chinese with English abstract P343.6). DOI:10.1007/s11442-013-1036-4.
  • Du, J., He, Y., Li, S., Wang, S., Niu, H. and co-authors. 2013. Mass balance and near-surface ice temperature structure of Baishui Glacier No.1 in Mt. Yulong. J. Geogr. Sci. 23, 668–678.
  • Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H. and co-authors. 2009. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9, 2481–2497. DOI:10.5194/acp-9-2481-2009.
  • Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J. 2007. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, D11202. DOI:10.1029/2006JD008003.
  • Fujita, K. 2007. Effect of dust event timing on glacier runoff: sensitivity analysis for a Tibetan glacier. Hydrol. Process. 21, 2892–2896. DOI:10.1002/hyp.6504.
  • Fujita, K., Takeuchi, N., Nikitin, S. A., Surazakov, A. B., Okamoto, S. and co-authors. 2011. Favorable climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan. The Cryosphere. 5, 539–549. DOI:acp-10-5965-2010/tc-5-539-2011.
  • Gertler, C. G., Puppala, S. P., Panday, A., Stumm, D. and Shea, J. 2016. Black carbon and the Himalayan cryosphere: a review. Atmos. Environ. 125, 404–417. DOI:10.1016/j.atmosenv.2015.08.078.
  • Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C. and co-authors. 2007. An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys. 7, 4329–4373.Online at: http://www.atmos-chem-phys-discuss.net/7/4165/2007/
  • Grannas, A. M., Shepson, P. B. and Filley, T. R. 2004. Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biogeochem. Cycles. 18. DOI:10.1029/2003GB002133.
  • Guimbaud, C., Grannas, A. M., Shepson, P. B., Fuentes, J. D., Boudries, H. and co-authors. 2002. Snowpack processing of acetaldehyde and acetone in the Arctic atmospheric boundary layer. Atmos. Environ. 36, 2573–2752. DOI:10.1016/S1352-2310(02)00107-3.
  • Hagler, G. S., Bergin, M. H., Smith, E. A., Dibb, J. E., Anderson, C. and co-authors. 2007. Particulate and water-soluble carbon measured in recent snow at Summit, Greenland. Geophys. Res. Lett. 34, L16505. DOI:10.1029/2007GL030110.
  • Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S. and co-authors. 2010. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 10, 5965–5977. DOI:10.5194/acp-10-5965-2010.
  • Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M. and co-authors. 2008. Glacial ecosystems. Ecol. Monogr. 78, 41–67.
  • Hood, E., Battin, T. J., Fellman, J., O'Neel, S. and Spencer, R. G. M. 2015. Storage and release of organic carbon from glaciers and ice sheets. Nature Geosci. 8, 91–96. DOI:10.1038/NGEO2331.
  • Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D. and co-authors. 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature. 462, 1044–U1100. Online at: https://www.nature.com/articles/nature08580.
  • Jacob, T., Wahr, J., Pfeffer, W. T. and Swenson, S. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature. 482, 514–518. DOI:10.1039/B605172N.
  • Jones, A. E., Weller, R., Anderson, P. S., Jacobi, H. W., Wolff, E. W. and co-authors. 2001. Measurements of NOx emissions from the Antarctic snowpack. Geophys. Res. Lett. 28, 1499–1502. DOI:10.1029/2000GL011956.
  • Kang, S., Qin, D., Mayewski, P. A., Wake, C. P. and Ren, J. 2001. Climatic and environmental records from the Far East Rongbuk ice core, Mt. Qomolangma (Mt. Everest). Episodes. 24, 176–181. DOI:10.3321/j.issn:1005-2321.2000.z1.285.
  • Kang, S., Wang, F., Morgenstern, U., Zhang, Y., Grigholm, B. and co-authors. 2015. Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere. 9, 1213–1222. DOI:10.5194/tc-9-1213-2015.
  • Kang, S. C., Zhang, Y., Grigholm, B., Kaspari, S., Qin, D. H. and co-authors. 2010. Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmos. Environ. 44, 2980–2989.
  • Kaspari, S. D., Painter, T. H., Gysel, M., Skiles, S. M. and Schwikowski, M. 2014. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos. Chem. Phys. 14, 8089–8103. DOI:10.5194/acp-14-8089-2014.
  • Khare, P., Baruah, B. P. and Rao, P. G. 2011. Water-soluble organic compounds (WSOCs) in PM(2.5) and PM(10) at a subtropical site of India. Tellus Ser. B. 63, 990–1000. DOI:10.1111/j.1600-0889.2011.00564.x.
  • Kirchstetter, T. W., Novakov, T. and Hobbs, P. V. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109, (D21). DOI:10.1029/2004JD004999.
  • Kirillova, E. N., Andersson, A., Han, J., Lee, M. and Gustafsson, Ö. 2014a. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmos. Chem. Phys. 14, 1413–1422. DOI:10.5194/acp-14-1413-2014.
  • Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P.S. and co-authors. 2013. 13C- and 14C-based study of sources and atmospheric processingof water-soluble organic carbon (WSOC) in South Asian aerosols. J. Geophy. Research: Atmos. 118, 614–626.
  • Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S. and co-authors. 2014b. Water-soluble organic carbon aerosols during a full New Delhi winter: isotope-based source apportionment and optical properties. J. Geophys. Res: Atmos. 119, 3476–3485. DOI:10.1002/2013JD020041.
  • Kuchiki, K., Aoki, T., Niwano, M., Matoba, S., Kodama, Y. and co-authors. 2015. Elemental carbon, organic carbon, and dust concentrations in snow measured with thermal optical and gravimetric methods: variations during the 2007-2013 winters at Sapporo. Japan. J. Geophys. Res: Atmos. 120, 868–882. DOI:10.1002/2014JD022144.
  • Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D. and co-authors. 2013. Relationship between oxidation level and optical properties of secondary organic aerosol. Environ. Sci. Technol. 47, 6349–6357. DOI:10.1021/es401043j.
  • Lau, W. K. M., Kim, M. K., Kim, K. M. and Lee, W. S. 2010. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett. 5, 025204. DOI:1748-9326/10/025204+10$30.00.
  • Legrand, M., Preunkert, S., Jourdain, B., Guilhermet, J., Fa{Ï}n, X. and co-authors. 2013a. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim. Past. 9, 2195–2211. DOI:10.5194/cp-9-2195-2013.
  • Legrand, M., Preunkert, S., May, B., Guilhermet, J., Hoffman, H. and co-authors. 2013b. Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: implications for the long-term change of organic aerosol over Europe. J. Geophys. Res: Atmos. 118, 3879–3890. DOI:10.1002/jgrd.50201.
  • Li, C., Bosch, C., Kang, S., Andersson, A., Chen, P. and co-authors. 2016a. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat. Comms. 7, 12574. DOI:10.1038/ncomms12574.
  • Li, C. L., Chen, P. F., Kang, S. C., Yan, F. P., Li, X. F. and co-authors. 2016b. Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmos. Environ. 141, 203–208. DOI:10.1016/j.atmosenv.2016.06.064.
  • Li, X., Kang, S., He, X., Qu, B., Tripathee, L. and co-authors. 2017. Light-absorbing impurities accelerate glacier melt in the central Tibetan Plateau. Sci. Total Environ. 587–588, 482–490. DOI:10.1016/j.scitotenv.2017.02.169.
  • Li, C., Yan, F., Kang, S., Chen, P., Hu, Z. and co-authors. 2016c. Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmos. Environ. 143, 79–85. DOI:10.1016/j.atmosenv.2016.08.042.
  • Lüthi, Z. L., Kerlak, B., Kim, S. W., Lauer, A., Mues, A. and co-authors. 2015. Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas. Atmos. Chem. Phys. 15, 6007–6021. DOI:10.5194/acp-15-6007-2015.
  • Lyons, W. B., Welch, K. A. and Doggett, J. K. 2007. Organic carbon in Antarctic snow. Geophys. Res. Lett. 34, L02501, 1–4. DOI:10.1029/2006GL028150.
  • May, B., Wagenbach, D., Hoffmann, H., Legrand, M., Preunkert, S. and co-authors. 2013. Constraints on the major sources of dissolved organic carbon in Alpine ice cores from radiocarbon analysis over the bomb-peak period. J. Geophys. Res: Atmos. 118, 3319–3327. DOI:10.4319/lo.1964.9.1.0138.
  • Meeker, L. D., Mayewski, P. A. and Bloomfield, P. 1995. A new approach to glaciochemical time series analysis. In: Ice Core Studies of Biogeochemical Cycles. NATOASI Series (ed. R.J. Delmas) Vol. 130, Springer, Berlin, 383–400 pp. Online at: https://link.springer.com/chapter/10.1007%2F978-3-642-51172-1_20
  • Ming, J., Wang, P., Zhao, S. and Chen, P. 2013. Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet. J. Environ. Sci. 25, 1601–1607. DOI:10.1016/S1001-0742(12)60220-4.
  • Nie, J., Garzione, C., Su, Q., Liu, Q., Zhang, R. and co-authors. 2017. Dominant 100,000-year precipitation cyclicity in a late Miocene lake from northeast Tibet. Sci. Adv. 3, e1600762. DOI:10.1126/sciadv.1600762.
  • Niu, H., He, Y., Kang, S., Lu, X., Shi, X. and co-authors. 2016. Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau. J. Earth Syst. Sci. 125, 403–416. DOI:10.1007/s12040-016-0670-5.
  • Niu, H. W., He, Y. Q., Lu, X. X., Shen, J., Du, J. K. and co-authors. 2014. Chemical composition of rainwater in the Yulong Snow Mountain region, Southwestern China. Atmos. Res. 144, 195–206. DOI:10.1016/j.atmosres.2014.03.010.
  • Niu, H., Kang, S., Shi, X., He, Y., Lu, X. and co-authors. 2017a. Water-soluble elements in snow and ice on Mt. Yulong. Sci. Total Environ. 574, 889–900. DOI:10.1016/j.scitotenv.2016.09.114.
  • Niu, H., Kang, S., Shi, X., Paudyal, R., He, Y. and co-authors. 2017b. In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates. Sci. Total Environ. 581–582, 848–856. DOI:10.1016/j.scitotenv.2017.01.032.
  • Niu, H. W., Kang, S. C., Wang, H. L., Zhang, R. D., Lu, X. X. and co-authors. 2018. Spatio-temporal variability and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmos. Chem. Phys. 18, 6441–6460. DOI:10.5194/acp-18-6441-2018.
  • Park, S., Cho, S. Y. and Bae, M. S. 2015. Source identification of water-soluble organic aerosols at a roadway site using a positive matrix factorization analysis. Sci. Total Environ. 533, 410–421. DOI:10.1016/j.scitotenv.2015.07.004.
  • Paudyal, R., Kang, S., Sharma, C. M., Tripathee, L., Huang, J. and co-authors. 2016. Major ions and trace elements of two selected river near Everest region, southern Himalayas, Nepal. Environ. Earth Sci. 75, 11. DOI:10.1007/s12665-015-4811-y.
  • Pavuluri, C. M., Kawamura, K., Aggarwal, S. G. and Swaminathan, T. 2011. Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmos. Chem. Phys. 11, 8215–8230. DOI:10.5194/acp-11-8215-2011.
  • Pio, C. A., Legrand, M., Oliveira, T., Afonso, J., Santos, C. and co-authors. 2007. Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. J. Geophys. Res. 112, 4789–4797. DOI:10.1029/2006JD008038.
  • Psichoudaki, M. and Pandis, S. N. 2013. Atmospheric aerosol water-soluble organic carbon measurement: a theoretical analysis. Environ. Sci. Technol. 47, 9791–9798. DOI:10.1021/es402270y.
  • Qu, B., Ming, J., Kang, S.-C., Zhang, G.-S., Li, Y.-W. and co-authors. 2014. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmos. Chem. Phys. 14, 11117–11128. DOI:10.5194/acp-14-11117-2014.
  • Ram, K., Sarin, M. M. and Hegde, P. 2010. Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya. Atmos. Chem. Phys. Discuss. 10, 11791–11803. http://dx.doi.org/10.5194/acp-10-11791-2010.
  • Ramanathan, V. and Carmichael, G. 2008. Global and regional climate changes due to black carbon. Nature Geosci. 1, 221–227. DOI:10.1038/ngeo156.
  • Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B. and co-authors. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience. 58, 701. DOI:10.1641/B580807.
  • Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R. and Fahey, D. W. 2013. Black carbon aerosol size in snow. Sci. Rep. 3, 1356. DOI:10.1038/srep01356.
  • Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P. and co-authors. 2012. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geosci. 5, 710–714. DOI:10.1038/ngeo1581.
  • Spencer, R. G. M., Guo, W., Raymond, P. A., Dittmar, T., Hood, E. and co-authors. 2014. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau. Geochim. Cosmochim. Acta. 142, 64–74. DOI:10.1016/j.gca.2014.08.006.
  • Stibal, M., Šabacká, M. and Žárský, J. 2012. Biological processes on glacier and ice sheet surfaces. Nature Geosci. 5, 771–774. DOI:10.1038/ngeo1611.
  • Stubbins, A. and Dittmar, T. 2012. Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnol. Oceanogr. Methods. 10, 347–352. DOI:10.4319/lom.2012.10.347.
  • Sumner, A. L. and Shepson, P. B. 1999. Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature. 398, 230–233. DOI:10.1038/18423.
  • Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A. and co-authors. 2000. A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science. 289, 1916–1919. DOI:10.1126/science.289.5486.1916.
  • Voisin, D., Jaffrezo, J. L., Houdier, S., Barret, M., Cozic, J. and co-authors. 2012. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. J. Geophys. Res. 117, D00R19. DOI:10.1029/2011JD016612.
  • Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X. and co-authors. 2017. Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey. Atmos. Chem. Phys. 17, 2279–2296. DOI:10.5194/acp-17-2279-2017.
  • Wang, M., Xu, B., Cao, J., Tie, X., Wang, H. and co-authors. 2015. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing. Atmos. Chem. Phys. 15, 1191–1204. https://doi.org/10.5194/acp-15-1191-2015.
  • Xu, B. Q., Cao, J. J., Hansen, J., Yao, T. D., Joswia, D. R. and co-authors. 2009. Black soot and the survival of Tibetan glaciers. Proc. PNAS. 106, 22114–22118. DOI:10.1073/pnas.0910444106.
  • Xu, J. Z., Zhang, Q., Wang, Z. B., Yu, G. M., Ge, X. L. and co-authors. 2015. Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai - Xizang (Tibet) Plateau: insights into aerosol sources. Atmos. Chem. Phys. 15, 5069–5081. DOI:10.5194/acp-15-5069-2015.
  • Yan, F., Kang, S., Chen, P., Bai, J., Li, Y. and co-authors. 2015. Concentration and source of dissolved organic carbon of snowpits of the Tibetan Plateau. Environ. Sci. 36, 2827–2832. (in Chinese with English abstract). DOI:10.13227/j.hjkx.2015.08.013.
  • Yan, F. P., Kang, S. C., Li, C. L., Zhang, Y. L., Qin, X. and co-authors. 2016. Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. The Cryosphere. 10, 2611–2621. DOI:10.5194/tc-10-2611-2016.
  • Yan, G. and Kim, G. 2012. Dissolved organic carbon in the precipitation of Seoul, Korea: implications for global wet depositional flux of fossil-fuel derived organic carbon. Atmos. Environ. 59, 117–124. DOI:10.1016/j.atmosenv.20/2.05.044.
  • Yao, T. D., Thompson, L. G., Jiao, K., Mosley-Thompson, E. and Yang, Z. 1995. Recent warming as recorded in the Qinghai-Tibetan Plateau cryosphere. A Glaciology 21, 196–200. DOI:10.1017/S0260305500015810.
  • Yao, T. D., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y. and co-authors. 2012a. Third pole environment (tpe). Environ. Dev. 3, 52–64. DOI:10.1016/j.envdev.2012.04.002.
  • Yao, T. D., Thompson, L., Yang, W., Yu, W., Gao, Y. and co-authors. 2012b. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim. Change. 2, 663–667. DOI:10.1038/nclimate1580.
  • Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E. and co-authors. 2010. Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory – Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys. 10, 6603–6615. DOI:10.5194/acp-10-6603-2010.
  • You, Q., Kang, S., Pepin, N., Flügel, W.-A., Yan, Y. and co-authors. 2010. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Change. 71, 124–133. DOI:10.1016/j.gloplacha.2010.01.020.