1,705
Views
4
CrossRef citations to date
0
Altmetric
Research Article

On the early studies recognizing the role of sulphuric acid in atmospheric haze and new particle formation

Pages 1-11 | Received 12 Sep 2017, Accepted 16 Apr 2018, Published online: 30 May 2018

References

  • Abbe, C. 1900. Rafinesque on atmospheric dust. Mon. Weather Rev. 28, 291–292. DOI:10.1175/1520-0493(1900)28[291b:ROAD]2.0.CO;2.
  • Aitken, J. 1881. On dust, fogs and clouds. Trans. R. Soc. Edinb. 30, 337–368. DOI:10.1017/S0080456800029069.
  • Aitken, J. 1900. On some nuclei of cloudy condensation. Trans. R. Soc. Edinb. 39, 15–25. DOI:10.1017/S0080456800034025.
  • Aitken, J. 1913. The Sun as a fog producer. Proc. R. Soc. Edinb. 32, 183–215. DOI:10.1017/S0370164600012864.
  • Alves, C. 2005. Aerossóis atmosféricos: Perspectiva histórica, fontes, processos químicos de formação e composição orgânica. Quím. Nova 28, 859–870. DOI:10.1590/S0100-40422005000500025.
  • Aristotle (trans. R. W. Webster). 1931. Meteorologica. In: The Works of Aristotle (ed. W. D. Ross) Vol. 3. Oxford University Press, Oxford.
  • Auzout, A. 1666. Lettre a Monsieur l’Abbe Charles. J. Sçavans. 2, 615–624.
  • Barus, C. 1893. Colored cloudy condensation as depending on air temperature and dust-contents, with a view to dust counting. Am. Meteorol. J. 10, 12–34.
  • Barus, C. 1902. Preliminary results on the changes of atmospheric nucleation. Science 16, 948–952. DOI:10.1126/science.16.415.948.
  • Barus, C. 1903. The nucleation during cold weather. Phys. Rev. (Ser. I). 16, 193–198.
  • Barus, C. 1905. A Continuous Record on Atmospheric Nucleation. Smithson. Contrib. Knowl. 34, Smithsonian Institution, Washington, D.C.
  • Barus, C. 1906a. Condensation nuclei. Phys. Rev. (Ser. I). 22, 82–110.
  • Barus, C. 1906b. The Nucleation of the Uncontaminated Atmosphere. Carnegie Publ. 40, Carnegie Institution, Washington, D.C.
  • Barus, C. 2005. One of the 999 about to Be Forgotten (ed. A. W.-O. Schmidt), AWOS Publishing, New York.
  • Berzelius, J. J. 1818. Discovery of a new alkali and a new metal. Ann. Phil. 11, 291–293.
  • Butcher, S. S. and Charlson, R. J. 1972. An Introduction to Air Chemistry. Academic Press, New York.
  • Cao, J. J., Li, Y. K., Jiang, T. and Hu, G. 2015. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere. Atmos. Chem. Phys. 15, 6959–6969. DOI:5194/acp-15-6959-2015.
  • Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 326, 655–661. DOI:10.1038/326655a0.
  • Coulier, P. J. 1875. Note sur une nouvelle propriété de l’air. J. Pharm. Chim. 22, 165–178.
  • Demarée, G. R. 2014. Haarrauch, un trouble atmosphérique ou un trouble environnemental et médical au XIXc siècle. In: La brume et le brouillard dans lascience, la littérature et les arts (eds. K. Becker and O. Leplatre). Les Éditions Hermann, Paris, pp. 129–143.
  • Demarée, G., Nordlin, Ø., Malaquias, I. and Gonzalez Lopo, D. 2007. Volcanic eruptions, earth- & seaquakes, dry fogs vs. Aristotle’s Meteorologica and the Bible in the framework of the eighteenth century science history. Bull. Séanc. Acad. Sci. Outre-Mer. 53, 337–359.
  • Duplissy, J., Enghoff, M. B., Aplin, K. L., Arnold, F., Aufmhoff, H. and co-authors. 2010. Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys. 10, 1635–1647. DOI:10.5194/acp-10-1635-2010.
  • Eisele, F. L. and Tanner, D. J. 1993. Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere. J. Geophys. Res. 98, 9001–9010. DOI:10.1029/93JD00031.
  • Elm, J., Myllys, N. and Kurtén, T. 2017. What is required for highly oxidized molecules to form clusters with sulfuric acid? J. Phys. Chem. A. 121, 4578–4587. DOI:10.1021/acs.jpca.7b03759.
  • Eriksson, E. 1960. The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications. Part II. Tellus. 12, 64–109. DOI:10.3402/tellusa.v12i1.9341.
  • Farkas, L. 1927. Keimbildungsgeschwindigket in übersättigten Dämpfen. Z. Phys. Chem. 175, 236–242. DOI:10.1515/zpch-1927-12513.
  • Gibbs, J. W. 1875. On the equilibrium of heterogeneous substances. First part. Trans. Connect. Acad. Arts Sci. 3, 108–248.
  • Harrison, G. 2011. The cloud chamber and CTR Wilson’s legacy to atmospheric science. Weather. 66, 276–279. DOI:10.1002/wea.830.
  • Hogg, A. R. 1939. The intermediate ions in the atmosphere. Proc. Phys. Soc. 51, 1014–1026. DOI:10.1088/0959-5309/51/6/311.
  • Hólm, S. M. 1784. Om Jordbranden Paa Island i Aaret 1783. Peder Horrebow, Copenhagen.
  • Husar R. B., 2000. Atmospheric aerosol science before 1900. In: History of Aerosol Science (eds. O. Preining and E. J. Davis). Verlag der Österreichischen Akademie der Wissenschaften, Vienna, pp. 25–36.
  • Kant, I. 1756a. Von der Ursachen der Erderschütterungen bei Gelegenheit des Unglücks, welches die westliche Länder von Europa gegen das Ende des vorigen Jahres betroffen hat. Wöchentliche Königsbergische Frag- und Anzeigungs-Nacthrichten, January 24 and 31.
  • Kant, I. 1756b. Geschichte und Naturbeschreibung der merkwürdigsten Vorfälle des Erdbebens, welches an dem Ende des 1755sten Jahres einen groszen Theil der Erde erschüttert hat. J. H. Hartung, Königsberg.
  • Kant, I. 1802. Physische Geographie, Band 1 (comp. F. T. Rink). Göbbelns und Unzer, Königsberg.
  • Karpenko, V. and Norris, J. A. 2002. Vitriol in the history of chemistry. Chem. Listy. 96, 997–1005.
  • Kiessling, J. 1884. Nebelglüh-Apparat. Abh. Naturwiss. Vereins Hamburg–Altona. 8, 147–154.
  • Knowles Middleton, W. E. 1964. Chemistry and meteorology, 1700–1825. Ann. Sci. 20, 125–141. DOI:10.1080/00033796400203024.
  • Kulmala, M., Lehtinen, K. E. J. and Laaksonen, A. 2006. Cluster activation theory as an explanation of the linear dependence between formation rate rate of 3 nm particles and sulphuric acid concentration. Atmos. Chem. Phys. 6, 787–793. DOI:10.5194/acp-6-787-2006.
  • Kulmala, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M. and co-authors. 2014. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu. Rev. Phys. Chem. 65, 21–37. DOI:10.1146/annurev-physchem-040412-110014.
  • Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A. and co-authors. 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176. DOI:10.1016/j.jaerosci.2003.10.003.
  • Kupiainen-Määttä, O., Olenius, T., Korhonen, H., Malila, J., Dal Maso, M. and co-authors. 2014. Critical cluster size cannot in practice be determined by slope analysis in atmospherically relevant applications. J. Aerosol Sci. 77, 127–144. DOI:10.1016/j.jaerosci.2014.07.005.
  • Lémery, N. 1703. Explication physique et chymique des feux souterrains, des tremblemens de terre, des ouragans, des eclairs & du tonnere. Hist. Acad. R. Sci. Mem. Math. Phys. 1700, 101–110.
  • Lenard, P. and Ramsauer, C. 1911. Über die Wirkungen sehr kurzwelligen ultravioletten Lichtes auf Gase und über eine sehr reiche Quelle dieses Lichtes. Teil IV. Über die Nebelkernbildung durch Licht in der Erdatmosphäre und in anderen Gasen, und über Ozonbildung. Sitzungsber. Heidelb. Akad. Wiss. Math. Naturwiss. Kl. A 16, 1–27.
  • Lindsay, R. B. 1941. Carl Barus. Biogr. Mem. Natl. Acad. Sci. U.S.A. 22, 169–213.
  • Lucretius (trans. W. E. Leonard). 1916. De Rerum Natura. E. P. Dutton & Co., New York.
  • Marcorelle, B. D. 1784. Description d’un brouillard extraordinaire qui a paru fur la fin du mois de Juin, & au commencement de celui de Juillet 1783. Obs. Phys. Chim. Hist. Nat. Arts. 24, 18–23.
  • Marvin, D. C. and Reiss, H. 1978. Cloud chamber study of the gas phase photooxidation of sulfur dioxide. J. Chem. Phys. 69, 1897–1918. DOI:10.1063/1.436827.
  • Mohnen, V. and Hidy, G. M. 2010. Measurements of atmospheric nanoparticles (1875–1980). Bull. Amer. Meteor. Soc. 91, 1525–1539. DOI:10.1175/2010BAMS2929.1.
  • Möller, D. 2014. Chemistry of the Climate System. 2nd ed. De Gruyter, Berlin.
  • Mourgue de Montredon 1784. Sur l’origine & sur la nature des vapeurs qui ont régné dans l’atmosphère pendant l’été. Hist. Acad. R. Sci. Mem. Math. Phys. 1781, 754–773.
  • Müller, I. 2007. A History of Thermodynamics.Springer, Berlin.
  • Oeser, E. 1992. Historical earthquake theories from Aristotle to Kant. In: Historical Earthquakes in Central Europe (eds. R. Gutdeutsch, G. Grünthal and R. Musson) Vol. 1. Geologische Bundesanstalt, Vienna, pp. 11–31.
  • Owen, G. and Pealing, H. 1911. On condensation nuclei produced by the action of light on iodine vapour. Phil. Mag. (Ser. 6) 21, 465–479. DOI:10.1080/14786440408637054.
  • Patrin, E. M. L. 1809. A l’occasion des pierres météoriques ou météorilites. J. Phys. Chim. Hist. Nat. Arts. 68, 401–408.
  • Pealing, H. 1915. On condensation nuclei produced by the action of light on iodine vapour. Phil. Mag. (Ser. 6) 29, 413–419. DOI:10.1080/14786440308635320.
  • Plinius Secundus, G. (Pliny the Elder). 1906. Naturalis Historia (ed. K. F. T. Mayhoff). Teubner, Leipzig.
  • Podzimek, J. 1989. John Aitken’s contribution to atmospheric and aerosol sciences—One hundred years of condensation nuclei counting. Bull. Amer. Meteor. Soc. 70, 1538–1545. DOI:10.1175/1520-0477(1989)070<1538:JACTAA>2.0.CO;2.
  • Prager, M. J., Stephens, E. R. and Scott, W. E. 1960. Aerosol formation from gaseous air pollutants. Ind. Eng. Chem. 52, 521–524. DOI:10.1021/ie50606a034.
  • Preus, 1785. Observationes Saganenses. Ephemer. Soc. Meteorol. Palatinae. 3, 330–370.
  • Prout, W. 1834. Chemistry, Meteorology and the Function of Digestion. Bridgewater Treat. VIII, William Pickering, London.
  • Rafinesque, C. S. 1819. Thoughts on atmospheric dust. Am. J. Sci. 1, 397–400.
  • Rafinesque, C. S. 1821. Letters on atmospheric dust. West. Minerva. 1, 27–29.
  • Reinhardt, O. and Oldroyd, D. R. 1983. Kant’s theory on earthquakes and volcanic action. Ann. Sci. 40, 247–272. DOI:10.1080/00033798300200221.
  • Renzetti, N. A. and Doyle, G. J. 1960. Photochemical aerosol formation in sulfur dioxide–hydrocarbon systems. Int. J. Air Pollut. 2, 327–345.
  • Rubin, M. B. 2001. The history of ozone. The Schönbein period, 1839–1868. Bull. Hist. Chem. 26, 40–56.
  • Schönbein, C. F. 1837. On the odour accompanying electricity and on the probability on its dependence on the presence of a new substance. Phil. Mag. (Ser. 3). 4, 226–294.
  • Schröder, W. and Wiederkehr, K. H. 1998. Geophysics contributed to the radical change from classical to modern physics 100 years ago. Eos. Trans. AGU 79, 559–562. DOI:10.1029/98EO00411.
  • Schröder, W. and Wiederkehr, K. H. 2000. Johann Kiessling, the Krakatoa event and the development of atmospheric optics after 1883. Notes Rec. R. Soc. Lond. 54, 249–258. DOI:10.1098/rsnr.2000.0110.
  • Senebier, J. 1784. Sur la vapeur qui a régné pendant l’eté de 1783. Obs. Phys. Chim. Hist. Nat. Arts. 24, 401–411.
  • Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B. and co-authors. 2017. Recent advances in understanding secondary organic aerosol: implications for global climate forcing. Rev. Geophys. 55, 509–559. DOI:10.1002/2016RG000540.
  • Soulavie, G. 1783. Lettre de M. l’Abbé Giraud Soulavie au R. P. Cotte, de l’Oratoire, Curé de Montmorency. Journal de Paris July 21 and 22.
  • Stothers, R. B. 1996. The great dry fog of 1783. Clim. Change. 32, 79–89. DOI:10.1007/BF00141279.
  • Thomson, W. (lord Kelvin). 1871. On the equilibrium of vapour at a curved surface of liquid. Phil. Mag. (Ser. 4). 42, 448–452. DOI:10.1080/14786447108640606.
  • Thordarson, T. and Self, S. 2003. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J. Geophys. Res. 108, 4011. DOI:10.1029/2001JD002042.
  • Toaldo, 1785. Observationes Patavienses. Ephemer. Soc. Meteorol. Palatinae. 3, 546–590.
  • Tyndall, J. 1868. On a new series of chemical reactions produced by light. Proc. R. Soc. Lond. 17, 92–102. DOI:10.1098/rspl.1868.0012.
  • Tyndall, J. 1870. On the action of rays of high refrangibility upon gaseous matter. Phil. Trans. R. Soc. Lond. 160, 333–365. DOI:10.1098/rstl.1870.0019.
  • Tyndall, J. 1881. Essays on the Floating Matter in Air in Relation to Putrefaction and Infection. Longmans, Green, and Co., London.
  • Van Swinden, 1785. Observationes nebulam, quae mense Junio 1783 apparuit, spectantes. Ephemer. Soc. Meteorol. Palatinae 3, 679–688.
  • Virey, J. J. 1803. Nature. Nouv. Dict. Hist. Nat. 15, 358–414.
  • Volmer, M. and Weber, A. 1926. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 119, 277–301. DOI:10.1515/zpch-1926-11927.
  • Von Helmholtz, R. 1886. Untersuchungen über Dämpfe und Nebel, besonders über solche von Lösungen. Ann. Phys. Chem. 263, 508–543. DOI:10.1002/andp.18862630403.
  • Von Helmholtz, R. 1887. Versuche mit einem Dampfstrahl. Ann. Phys. Chem. 268, 1–19. DOI:10.1002/andp.18872680902.
  • Von Helmholtz, R. and Richarz, F. 1890. Über die Einwirkung chemischer und electrischer Processe auf den Dampfsthral und über die Dissociation der Gase, insbesondere der Sauerstoffs. Ann. Phys. Chem. 276, 161–202. DOI:10.1002/andp.18902760602.
  • Vonnegut, K. 1998. Timequake.Vintage, London.
  • Wang, C. C., Davis, L. I., Wu, C. H., Japar, S., Niki, H. and co-authors. 1975. Hydroxyl radical concentrations measured in ambient air. Science. 189, 797–800. DOI:10.1126/science.189.4205.797.
  • Warneck, P. 1974. On the role of OH and HO2 radicals in the troposphere. Tellus. 26, 39–46. DOI:10.3402/tellusa.v26i1-2.9735.
  • Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J. and co-authors. 1996. Measured atmospheric new particle formation rates: implications for nucleation mechanisms. Chem. Eng. Commun. 151, 53–64. DOI:10.1080/00986449608936541.
  • Wilson, C. T. R. 1897. Condensation of water vapour in the presence of dust-free air and other gases. Phil. Trans. R. Soc. Lond. A. 189, 265–307. DOI:10.1098/rsta.1897.0011.
  • Wilson, C. T. R. 1906. Condensation nuclei. Nature. 74, 619–621. DOI:10.1038/074619b0.
  • Yu, H., Gannet Hallar, A., You, Y., Sedlacek, A., Springston, S. and co-authors. 2014. Sub-3 nm particles observed at the coastal and continental sites in the United States. J. Geophys. Res. Atmos. 119, 860–879. DOI:10.1002/2013JD020841.
  • Zhang, R., Khalizov, A., Wang, L., Hu, M. and Xu, W. 2012. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112, 1957–2011. DOI:10.1021/cr2001756.