982
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Sensitivity assessment of PM2.5 simulation to the below-cloud washout schemes in an atmospheric chemical transport model

&
Pages 1-17 | Received 09 Oct 2017, Accepted 08 May 2018, Published online: 20 Jul 2018

References

  • Abel, S. J. and Shipway, B. J. 2007. A comparison of cloud‐resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Qjr. Meteorol. Soc. 133, 781–794. DOI:10.1002/qj.55.
  • Aikawa, M., Kajino, M., Hiraki, T. and Mukai, H. 2014. The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5 mm precipitation increments and numerical simulation. Atmos. Environ. 95, 165–174. DOI:10.1016/j.atmosenv.2014.06.015.
  • Aoki, M., Iwai, H., Nakagawa, K., Ishii, S. and Mizutani, K. 2016. Measurements of rainfall velocity and raindrop size distribution using coherent Doppler lidar. J. Atmos. Ocean Tech. 33, 1949–1966. DOI: 10.1175/JTECH-D-15-0111.1
  • Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L. and co-authors. 2011. A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4. 7 wet deposition estimates for 2002–2006. Geosci. Model Dev. 4, 357–371. DOI:10.5194/gmd-4-357-2011.
  • Atlas, D. 1953. Optical extinction by rainfall. J. Meteor. 10, 486–488. DOI:10.1175/1520-0469(1953)010<0486:OEBR>2.0.CO;2.
  • Atlas, D., Srivastava, R. C. and Sekhon, R. S. 1973. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 11, 1–35.
  • Atlas, D. and Ulbrich, C. W. 1977. Path-and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor. 16, 1322–1331. DOI:10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.
  • Bae, S. Y., Park, R. J., Kim, Y. P. and Woo, J. H. 2012. Effects of below-cloud scavenging on the regional aerosol budget in East Asia. Atmos. Environ. 58, 14–22. DOI:10.1016/j.atmosenv.2011.08.065.
  • Baklanov, A. and Sørensen, J. H. 2001. Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Phys. Chem. Earth. Part B: Hydrology, Oceans and Atmosphere 26, 787–799. DOI:10.1016/S1464-1909(01)00087-9.
  • Best, A. C. 1950. Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Qj. Royal Met. Soc. 76, 302–311. DOI:10.1002/qj.49707632905.
  • Best, A. C. 1950. The size distribution of raindrops. Qj. Royal Met. Soc. 76, 16–36. DOI:10.1002/qj.49707632704.
  • Blanchard, D. C. 1953. Raindrop size-distribution in Hawaiian rains. J. Meteor. 10, 457–473. DOI:10.1175/1520-0469(1953)010<0457:RSDIHR>2.0.CO;2.
  • Brandes, E. A., Zhang, G. and Vivekanandan, J. 2002. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor. 41, 674–685. DOI:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.
  • Campos, E. F., Zawadzki, I., Petitdidier, M. and Fernandez, W. 2006. Measurement of raindrop size distributions in tropical rain at Costa Rica. J Hydrol. 328, 98–109. DOI:10.1016/j.jhydrol.2005.11.047.
  • Cerro, C., Codina, B., Bech, J. and Lorente, J. 1997. Modeling raindrop size distribution and Z (R) relations in the Western Mediterranean area. J. Appl. Meteor. 36, 1470–1479. DOI:10.1175/1520-0450(1997)036<1470:MRSDAZ>2.0.CO;2.
  • Chapon, B., Delrieu, G., Gosset, M. and Boudevillain, B. 2008. Variability of rain drop size distribution and its effect on the Z–R relationship: A case study for intense Mediterranean rainfall. Atmos. Res. 87, 52–65. DOI:10.1016/j.atmosres.2007.07.003
  • Chate, D. M. and Pranesha, T. S. 2004. Field studies of scavenging of aerosols by rain events. J of Aerosol. Sci. 35, 695–706. DOI:10.1016/j.jaerosci.2003.09.007.
  • Chatterjee, A., Jayaraman, A., Rao, T. N. and Raha, S. 2010. In-cloud and below-cloud scavenging of aerosol ionic species over a tropical rural atmosphere in India. J. Atmos. Chem. 66, 27–40. DOI:10.1007/s10874-011-9190-5.
  • Chen, F. and Dudhia, J. 2001. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Rev. 129, 569–565. DOI:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  • Chen, B., Hu, Z., Liu, L. and Zhang, G. 2017. Raindrop Size Distribution Measurements at 4,500 m on the Tibetan Plateau During TIPEX-III. J. Geophys. Res, 122. DOI: 10.1002/2017JD027233
  • Chen, B., Yang, J. and Pu, J. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J. Meteorol. Soc. Japan. 91, 215–227. 85. DOI:10.2151/jmsj.2013-208.
  • Coutinho, M. A. and Tomás, P. P. 1995. Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center. Catena. 25, 187–197. DOI:10.1016/0341-8162(95)00009-H.
  • Das, S. K., Konwar, M., Chakravarty, K. and Deshpande, S. M. 2017. Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmos. Res. 186, 72–82. DOI:10.1016/j.atmosres.2016.11.003
  • Davenport, H. M. and Peters, L. K. 1978. Field studies of atmospheric particulate concentration changes during precipitation. Atmos. Environ. (1967) 12, 997–1008. DOI:10.1016/0004-6981(78)90344-X.
  • de Wolf, D. A. 2001. On the Laws-Parsons distribution of raindrop sizes. Radio Sci. 36, 639–642.
  • Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107. DOI:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
  • Dudhia, J., Hong, S. Y. and Lim, K. S. 2008. A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. JMSJ. 86A, 33–44. DOI:10.2151/jmsj.86A.33.
  • Duhanyan, N. and Roustan, Y. 2011. Below-cloud scavenging by rain of atmospheric gases and particulates. Atmos Environ. 45, 7201–7217. DOI:10.1016/j.atmosenv.2011.09.002.
  • Feingold, G. and Levin, Z. 1986. The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor. 25, 1346–1363. DOI:10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2.
  • Gong, W., Stroud, C. and Zhang, L. 2011. Cloud processing of gases and aerosols in air quality modeling. Atmosphere. 2, 567–616. DOI:10.3390/atmos2040567.
  • Grell, G. A. and Dévényi, D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29, 38-1.
  • Griffith, S. M., Huang, X. H., Louie, P. K. K. and Yu, J. Z. 2015. Characterizing the thermodynamic and chemical composition factors controlling PM 2.5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmos Environ. 122, 864–875. DOI:10.1016/j.atmosenv.2015.02.009.
  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I. and co-authors. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210. DOI:10.5194/acp-6-3181-2006.
  • Han, Z., Ueda, H. and Sakurai, T. 2006. Model study on acidifying wet deposition in East Asia during wintertime. Atmos. Environ. 40, 2360–2373. DOI:10.1016/j.atmosenv.2005.12.017.
  • Harikumar, R., Sampath, S. and Kumar, V. S. 2010. Variation of rain drop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India. Adv. Space Res. 45, 576–586. DOI: 10.1016/j.asr.2009.09.018
  • Huang, X. H., Bian, Q., Ng, W. M., Louie, P. K. and Yu, J. Z. 2014. Characterization of PM2. 5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 14, 237–250.
  • Hong, S. Y., Noh, Y. and Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 134, 2318–2341. DOI:10.1175/MWR3199.1.
  • Kang, Y., Hua, F., Zhong, K. and Zhu, H. 2015. A new analysis of fine aerosol capture by raindrops at terminal velocities. J. Aero. Sci. 89, 31–42. DOI:10.1016/j.jaerosci.2015.06.007.
  • Kessler, E. 1969. On the distribution and continuity of water substance in atmospheric circulations. In On the Distribution and Continuity of Water Substance in Atmospheric Circulations (pp. 1–84). American meteorological society.
  • Kwok, R. H. F., Napelenok, S. L. and Baker, K. R. 2013. Implementation and evaluation of PM 2.5 source contribution analysis in a photochemical model. Atmos. Environ. 80, 398–407. DOI:10.1016/j.atmosenv.2013.08.017.
  • Laws, J. O. and Parsons, D. A. 1943. The relation of raindrop‐size to intensity. Trans. Agu. 24, 452–460. DOI:10.1029/TR024i002p00452.
  • Laakso, L., Grönholm, T., Rannik, Ü., Kosmale, M., Fiedler, V. and co-authors. 2003. Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos. Environ. 37, 3605–3613. DOI:10.1016/S1352-2310(03)00326-1.
  • Lemaitre, P., Querel, A., Monier, M., Menard, T., Porcheron, E. and co-authors. 2017. Experimental evidence of the rear capture of aerosol particles by raindrops. Atmos. Chem. Phys. 17, 4159–4176. DOI:10.5194/acp-17-4159-2017.
  • Li, Y., Lau, A. K. H., Fung, J. C. H., Zheng, J. Y., Zhong, L. J. and co-authors. 2012. Ozone source apportionment (OSAT) to differentiate local regional and super‐regional source contributions in the Pearl River Delta region, China. J. Geophys. Res. 117, n/a.
  • Liu, J. Y. and Orville, H. D. 1969. Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci. 26, 1283–1298. DOI:10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2.
  • Loosmore, G. A. and Cederwall, R. T. 2004. Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmos. Environ. 38, 993–1003. DOI:10.1016/j.atmosenv.2003.10.055.
  • Lu, X., Fung, J. C. H. and Wu, D. 2015. Modeling wet deposition of acid substances over the PRD region in China. Atmos. Environ. 122, 819–828. DOI:10.1016/j.atmosenv.2015.09.035.
  • Lu, X., Yao, T., Li, Y., Fung, J. C. H. and Lau, A. K. H. 2016. Source apportionment and health effect of NO x over the Pearl River Delta region in southern China. Environ. Pollut. 212, 135–146. DOI:10.1016/j.envpol.2016.01.056.
  • Marshall, J. S. and Palmer, W. M. K. 1948. The distribution of raindrops with size. J. Meteor. 5, 165–166. DOI:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
  • Maria, S. F. and Russell, L. M. 2005. Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ. Sci. Technol. 39, 4793–4800. DOI:10.1021/es0491679.
  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res. 102, 16663–16682.
  • Myhre, G., Myhre, C. E. L., Samset, B. H. and Storelvmo, T. 2013. Aerosols and their relation to global climate and climate sensitivity. Nature Educ. Knowledge. 4, 7.
  • Nenes, A., Pandis, S. N. and Pilinis, C. 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aqua. Geochem. 4, 123–152. DOI:10.1023/A:1009604003981.
  • Roselle, S. J. and Binkowski, F. S. 1999. Cloud dynamics and chemistry, chap. 11. In: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality [CMAQ] Modeling System (eds. D. W. Byun and J. S. Ching), EPA/600/R-99/030. U.S. Environ. Protect. Agency, Washington, D. C., pp. 11-1–11-8.
  • Rasch, P. J., Feichter, J., Law, K., Mahowald, N., Penner, J. and co-authors. 2000. A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus B. 52, 1025–1056. DOI:10.3402/tellusb.v52i4.17091.
  • Scire, J. S., Strimaitis, D. G. and Yamartino, R. J. 2000. A User’s Guide for the CALPUFF Dispersion Model (version 5). Earth Tech, Inc., Concord, MA.
  • Sekhon, R. S. and Srivastava, R. C. 1971. Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci. 28, 983–994. DOI:10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2.
  • Seinfeld, J. H. and Pandis, S. N. 2006. : Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley and Sons, New Jersey.
  • Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D. and co-authors. 2012. The EMEP MSC-W chemical transport model–technical description. Atmos. Chem. Phys. 12, 7825–7865. DOI:10.5194/acp-12-7825-2012.
  • Slinn, W. 1983. Precipitation Scavenging, in Atmospheric Sciences and Power Production 1979 (Chap.11). Division of Biomedical Environment Research, U.S. Department of Energy, Washington, D.C.
  • Sparmacher, H., Fülber, K. and Bonka, H. 1993. Below-cloud scavenging of aerosol particles: Particle-bound radionuclides—Experimental. Atmos. Environ.. Part A. Gen. Top. 27, 605–618. DOI:10.1016/0960-1686(93)90218-N.
  • Timothy, K. I., Ong, J. T. and Choo, E. B. 2002. Raindrop size distribution using method of moments for terrestrial and satellite communication applications in Singapore. IEEE Trans. Antennas Propag. 50, 1420–1424. DOI: 10.1109/TAP.2002.802091
  • Ulbrich, C. W. 1983. Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor. 22, 1764–1775. DOI:10.1175/1520-0450(1983)022 < 1764:NVITAF >2.0.CO;2.
  • Uplinger, W. G. 1981. A new formula for raindrop terminal velocity. In Conference on Radar Meteorology, 20 th, Boston, MA (pp. 389–391).
  • Wang, X., Zhang, L. and Moran, M. D. 2010. Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos Chem Phys. 10, 5685–5705. DOI:10.5194/acp-10-5685-2010.
  • Wang, X., Zhang, L. and Moran, M. D. 2014a. Development of a new semi-empirical parameterization for below-cloud scavenging of size-resolved aerosol particles by both rain and snow. Geosci. Model Dev. 7, 799–819. DOI:10.5194/gmd-7-799-2014.
  • Wang, Y., Li, L., Chen, C., Huang, C., Huang, H. and co-authors. 2014b. Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. J. Geophys. Res. Atmos. 119, 1903–1914. DOI:10.1002/2013JD019630.
  • Wang, Y., Zhu, B., Kang, H., Gao, J., Jiang, Q. and co-authors. 2014c. Theoretical and observational study on below-cloud rain scavenging of aerosol particles. J. Univ. Chin. Acad. Sci.. 31, 306–313. In Chinese).
  • Wang, P. K. and Pruppacher, H. R. 1977. Acceleration to terminal velocity of cloud and raindrops. J. Appl. Meteor. 16, 275–280. DOI:10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;2.
  • Wu, D., Fung, J. C. H., Yao, T. and Lau, A. K. H. 2013. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method. Atmos. Environ. 76, 147–161. DOI: 10.1016/j.atmosenv.2012.11.069
  • Zikova, N. and Zdimal, V. 2016. Precipitation scavenging of aerosol particles at a rural site in the Czech Republic. Tellus B: Chem. Phys. Meteorol. 68, 27343. DOI:10.3402/tellusb.v68.27343.
  • Zhang, L. and Vet, R. 2006. A review of current knowledge concerning size-dependent aerosol removal. China Particuology. 4, 272–282. DOI:10.1016/S1672-2515(07)60276-0.
  • Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H. and co-authors. 2009. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9, 5131–5153. DOI:10.5194/acp-9-5131-2009.
  • Zheng, J., Zhang, L., Che, W., Zheng, Z. and Yin, S. 2009. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ. 43, 5112–5122. DOI:10.1016/j.atmosenv.2009.04.060.
  • Zhao, H. and Zheng, C. 2006. Monte Carlo solution of wet removal of aerosols by precipitation. Atmos. Environ. 40, 1510–1525. DOI:10.1016/j.atmosenv.2005.10.043.
  • Zhang, L., Wang, X., Moran, M. D. and Feng, J. 2013. Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos. Chem. Phys. 13, 10005–10025. DOI:10.5194/acp-13-10005-2013.