2,112
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere

, , , , , , & show all
Pages 1-13 | Received 18 Aug 2017, Accepted 10 Aug 2018, Published online: 08 Oct 2018

References

  • Albrecht, B. A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230. doi:10.1126/science.245.4923.1227.
  • Andreae, M. O. 2009. Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys. 9, 543–556. doi:10.5194/acp-9-543-2009.
  • Barrie, L. A. 1967. Arctic air pollution: an overview of current knowledge. Atmos. Environ. 20, 643–663. doi:10.1016/0004-6981(86)90180-0.
  • Bigg, E. K. and Leck, C. 2001. Cloud-active particles over the central Arctic Ocean. J. Geophys. Res. 106, 32155–32166. doi:10.1029/1999jd901152.
  • Bigg, E. K., Leck, C. and Tranvik, L. 2004. Particulates of the surface microlayer of open water in the central Arctic Ocean in summer. Mar. Chem. 91, 131–141. doi:10.1016/j.marchem.2004.06.005.
  • Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K. and Boucher, O. 2012. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol. Atmos. Chem. Phys. 12, 6775–6798. doi:10.5194/acp-12-6775-2012.
  • Croft, B., Martin, R. V., Leaitch, W. R., Tunved, P., Breider, T. J. and co-authors. 2016. Processes controlling the annual cycle of Arctic aerosol number and size distributions. Atmos. Chem. Phys. 16, 3665–3682. doi:10.5194/acp-16-3665-2016.
  • Deng, Z. Z., Zhao, C. S., Ma, N., Ran, L., Zhou, G. Q. and co-authors. 2013. An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos. Chem. Phys. 13, 6227–6237. doi:10.5194/acp-13-6227-2013.
  • Deshpande, C. G. and Kamra, A. K. 2014. Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard. J. Earth Syst. Sci. 123, 201–212. doi:10.1007/s12040-013-0373-0.
  • Engvall, A.-C., Krejci, R., Ström, J., Treffeisen, R., Scheele, R. and co-authors. 2008. Changes in aerosol properties during spring-summer period in the Arctic troposphere. Atmos. Chem. Phys. 8, 445–462. doi:10.5194/acp-8-445-2008.
  • Furutani, H., Dall'osto, M., Roberts, G. C., Prather, K. A. 2008. Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. Atmos. Environ. 42, 3130–3142. doi:10.1016/j.atmosenv.2007.09.024.
  • Hatzianastassiou, N., Wobrock, W. and Flossmann, A. I. 1998. The effect of cloud processing of aerosol particles on clouds and radiation. Tellus. B 50, 478–490. doi:10.3402/tellusb.v50i5.16232.
  • Hegg, D. A., Radke, L. F. and Hobbs, P. V. 1991. Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-Cloud-Climate Hypothesis. J. Geophys. Res. 96, 18727–18733. doi:10.1029/92jd00448.
  • Hegg, D. A., Ferek, R. J. and Hobbs, P. V. 1995. Cloud condensation nuclei over the Arctic Ocean in Early Spring. J. Appl. Meteor. 34, 2076–2082. doi:10.1175/1520-0450(1995)034<2076:CCNOTA>2.0.CO;2.
  • Hegg, D. A., Hobbs, P. V., Gassó, S., Nance, J. D. and Rangno, A. L. 1996. Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing. J. Geophys. Res. 101, 23349–23363. doi:10.1029/96jd02246.
  • Heintzenberg, J. and Leck, C. 2012. The summer aerosol in the central Arctic 1991–2008: did it change or not? Atmos. Chem. Phys. 12, 3969–3983. doi:10.5194/acp-12-3969-2012.
  • Herenz, P., Wex, H., Henning, S., Kristensen, T. B., Rubach, F, Roth, A., Borrmann, S., Bozem, S., Schulz, H. and Stratmann, F. 2018. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring‐Summer transition in May 2014. Atmos. Chem. Phys. 18(7), 4477–4496. doi:10.5194/acp-2017-745.
  • Hoppel, W. A., Dinger, J. E. and Ruskin, R. E. 1973. Vertical Profiles of CCN at various geographical locations. J. Atmos. Sci. 30, 1410–1420. doi:10.1175/1520-0469(1973)030<1410:VPOCAV>2.0.CO;2.
  • Hämeri, K., Väkevä, M., Aalto, P. P., Kulmala, M., Swietlicki, E. and co-authors. 2001. Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus. B 53, 359–379. doi:10.3402/tellusb.v53i4.16609.
  • IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Kim, J., Yoon, Y. J., Gim, Y., Kang, H. J., Choi, J. H. and co-authors. 2017. Seasonal variations in physical characteristics of aerosol particles at the King Sejong Station, Antarctic Peninsula. Atmos. Chem. Phys. 17, 12985–12999. doi:10.5194/acp-17-12985-2017.
  • Lance, S., Nenes, A., Medina, J. and Smith, J. N. 2006. Mapping the operation of the DMT continuous flow CCN counter. Aerosol Sci. Technol. 40, 242–254. doi:10.1080/02786820500543290.
  • Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J. and co-authors. 2013. Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmos. Chem. Phys. 13, 2735–2756. doi:10.5194/acp-13-2735-2013.
  • Law, K. S. and Stohl, A. 2007. Arctic air pollution: Origins and impacts. Science 315, 1537–1540. doi:10.1126/science.1137695.
  • Leaitch, W. R., Sharma, S., Huang, L., Toom-Sauntry, D., Chivulescu, A. and co-authors. 2013. Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. Elem. Sci. Anth. 1, 000017. doi:10.12952/journal.elementa.000017.
  • Li, S.-M., Barrie, L. A. and Sirois, A. 1993. Biogenic sulfate aerosol in the Arctic troposphere: 2. Trends and seasonal variations. J. Geophys. Res. 98, 20623–20631. doi:10.1029/93jd02233.
  • Matrai, P. A., Tranvik, L., Leck, C. and Knulst, J. C. 2008. Are high Arctic surface microlayers a potential source of aerosol organic precursors?. Mar. Chem. 108, 109–122. doi:10.1016/j.marchem.2007.11.001.
  • Martin, M., Chang, R. Y.-W., Sierau, B., Sjogren, S., Swietlicki, E. and co-authors. 2011. Cloud condensation nuclei closure study on summer Arctic aerosol. Atmos. Chem. Phys. 11, 11335–11350. doi:10.5194/acp-11-11335-2011.
  • Moore, R. H., Bahreini, R., Brock, C. A., Froyd, K. D., Cozic, J. and co-authors. 2011. Hygroscopicity and composition of Alaskan Arctic CCN during April 2008. Atmos. Chem. Phys. 11, 11807–11825. doi:10.5194/acp-11-11807-2011.
  • Mitchell, J. M. 1957. Visual range in the polar regions with particular reference to the Alaskan Arctic. J. Atmos. Terr. Phys. 17, 195–211..
  • O’Dowd, C. D., Lowe, J. A., Clegg, N., Smith, M. H. and Clegg, S. L. 2000. Modelling heterogeneous sulphate production in maritime stratiform clouds. J. Geophys. Res. 105, 7143–7160. doi:10.1029/1999jd900915.
  • Park, K.-T., Jang, S., Lee, K., Yoon, Y. J., Kim, M.-S. and co-authors. 2017. Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms. Atmos. Chem. Phys. 17, 9665–9675. doi:10.5194/acp-17-9665-2017.
  • Petters, M. D. and Kreidenweis, M. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971. doi:10.5194/acp-7-1961-2007.
  • Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E. and co-authors. 2002. A three-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res. 107, AAC 8-1–AAC 8-15. doi:10.1029/2001jd001248.
  • Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T. and co-authors. 2007. Arctic Haze: Current trends and knowledge gaps. Tellus 59, 99–114. doi:10.1111/j.1600-0889.2006.00236.x.
  • Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D. 2001. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124. doi:10.1126/science.1064034.
  • Rogers, R. R., Yau, M. K. 1996. A Short Course in Cloud Physics. 3rd ed. Butterworth‐Heinemann Woburn, Mass.
  • Screen, J. A., Deser, C. and Simmonds, I. 2012. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 39, n/a. doi:10.1029/2012GL051598.
  • Shaw, G. E. 1986. Cloud condensation nuclei associated with Arctic haze. Atmos. Environ. 20, 1453–1456. doi:10.1016/0004-6981(86)90017-X.
  • Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G. and co-authors. 2008. A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys. 8, 5353–5372. doi:10.5194/acp-8-5353-2008.
  • Shindell, D. and Faluvegi, G. 2009. Climate response to regional radiative forcing during the twentieth century. Nat. Geosci. 2, 294–300. doi:10.1038/ngeo473.
  • Sinha, P. R., Kondo, Y., Koike, M., Ogren, J. A., Jefferson, A. and co-authors. 2017. Evaluation of ground-based black carbon measurements by filter-based photometers at two Arctic sites. J. Geophys. Res. Atmos. 122, 3544–3572. doi:10.1002/2016JD025843.
  • Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A. and co-authors. 2006. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004. J. Geophys. Res. 111, 1–20. doi:10.1029/2006jd007216.
  • Stone, R. S., Sharma, S., Herber, A., Eleftheriadis, K. and Nelson, D. W. 2014. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. Elem. Sci. Anth. 2, 000027. doi:10.12952/journal.elementa.000027.
  • Ström, J., Engvall, A. C., Delbart, F., Krejci, R. and Treffeisen, R. 2009. On small particles in the Arctic summer boundary layer: observations at two different heights near Ny-Alesund, Svalbard. Tellus Ser. B-Chem. Phys. Meteorol. 61, 473–482. doi:10.1111/j.1600-0889.2008.00412.x.
  • Ström, J., Umegard, J., Torseth, K., Tunved, P., Hansson, H. C. and co-authors. 2003. One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001. Phys. Chem. Earth 28, 1181–1190. doi:10.1016/j.pce.2003.08.058.
  • Tunved, P., Ström, J. and Krejci, R. 2013. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660. doi:10.5194/acp-13-3643-2013.
  • Twomey, S. and Warner, J. 1967. Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci. 24, 702–703. doi:10.1175/1520-0469(1967)024<0702:COMOCD>2.0.CO;2.
  • Willis, M., Burkart, J., Thomas, J. L., Köllner, F., Schneider, J. and co-authors. 2016. Growth of nucleation mode particles in the summertime Arctic: a case study. Atmos. Chem. Phys. 16, 7663–7679. doi:10.5194/acp-16-7663-2016.
  • Yum, S. S. and Hudson, J. G. 2001. Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res. 106, 15045–15052. doi:10.1029/2000jd900357.
  • Yoon, J.-E., Kim, K. T., Macdonald, A. M., Park, K. T., Kim, H. C. and co-authors. 2017. Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-a concentrations in the western North Pacific Ocean. Geophys. Res. Lett. 44, 1474–1482. doi:10.1002/2016GL072124.
  • Zábori, J., Rastak, N., Yoon, Y. J., Riipinen, I. and Ström, J. 2015. Size-resolved cloud condensation nuclei concentration measurements in the Arctic: two case studies from the summer of 2008. Atmos. Chem. Phys. Discuss. 15, 5079–5128. doi:10.5194/acpd-15-5079-2015.