1,290
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Monte Carlo simulations of homogeneous nucleation and particle growth in the presence of background particles

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Becker, R. and Döring, W. 1935. Kinetische Behandlung der Keimbildung in Übersättigten Dämpfen. Ann. Phys. 416, 719–752. doi:10.1002/andp.19354160806.
  • Bennett, T. P. and Barrett, J. C. 2012. Water nucleation. A comparison between some phenomenological theories and experiment. J. Chem. Phys. 137(12), 124702. doi:10.1063/1.4754662.
  • Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S. and co-authors. 2016. New particle formation in the free troposphere. A question of chemistry and timing. Science 352, 1109–1112. doi:10.1126/science.aad5456.
  • Celnik, M., Patterson, R. I. A., Kraft, M. and Wagner, W. 2007. Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting. Combust. Flame 148, 158–176. Online at: http://www.scopus.com/inward/record.url?eid=2-s2.0-33846040006&partnerID=40&md5=fcab22044588d3b277a83007d4085ea1
  • Courtney, W. G. 1961. Remarks on homogeneous nucleation. J. Chem. Phys. 35, 2249–2250. doi:10.1063/1.1732252.
  • Davari, S. A. and Mukherjee, D. 2018. Kinetic Monte Carlo simulation for homogeneous nucleation of metal nanoparticles during vapor phase synthesis. AIChE J. 64, 18–28. doi:10.1002/aic.15887.
  • Efendiev, Y. and Zachariah, M. R. 2003. Hierarchical hybrid Monte-Carlo method for simulation of two-component aerosol nucleation, coagulation and phase segregation. J. Aerosol Sci. 34, 169–188. doi:10.1016/S0021-8502(02)00156-8.
  • Filipponi, A. and Giammatteo, P. 2016. Kinetic Monte Carlo simulation of the classical nucleation process. J. Chem. Phys. 145(21), 211913. doi:10.1063/1.4962757.
  • Ford, I. J. 2004. Statistical mechanics of nucleation. A review. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 218, 883–899. doi:10.1243/0954406041474183.
  • Gelbard, F. 1990. Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Sci. Technol. 12, 399–412. doi:10.1080/02786829008959355.
  • Girshick, S. L. and Chiu, C.-P. 1990. Kinetic nucleation theory. A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93, 1273–1277. doi:10.1063/1.459191.
  • Hao, X., Zhao, H., Xu, Z. and Zheng, C. 2013. Population balance-Monte Carlo simulation for gas-to-particle synthesis of nanoparticles. Aerosol Sci. Technol. 47, 1125–1133. doi:10.1080/02786826.2013.823642.
  • Karl, M., Leck, C., Gross, A. and Pirjola, L. 2012. A study of new particle formation in the marine boundary layer over the central Arctic Ocean using a flexible multicomponent aerosol dynamic model. Tellus B Chem. Phys. Meteorol. 64. Online at: https://www.tandfonline.com/doi/full/10.3402/tellusb.v64i0.17158
  • Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J. and co-authors. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429–433. doi:10.1038/nature10343.
  • Kotalczyk, G. and Kruis, F. E. 2017. A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging. J. Comput. Phys. 340, 276–296. doi:10.1016/j.jcp.2017.03.041.
  • Kotalczyk, G., Skenderovic, I. and Kruis, F. E. 2016. A GPU-based Monte Carlo technique for the simulation of simultaneous nucleation, coagulation and growth based on weighted simulation particles. In: 2016 AIChE Annual Meeting, San Francisco, AIChE, 490–497.
  • Kotalczyk, G., Skenderovic, I. and Kruis, F. E. 2017. Modeling of particle formation in arc discharges by Monte-Carlo based population balance modeling. MRS Adv. 148, 1–8. doi:10.1557/adv.2017.155.
  • Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E. and co-authors. 2013. Direct observations of atmospheric aerosol nucleation. Science 339, 943–946. doi:10.1126/science.1227385.
  • Laaksonen, A., Talanquer, V. and Oxtoby, D. W. 1995. Nucleation: Measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 489–524. Online at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0000848866&partnerID=40&md5=ed1189d650578ad48509e6760b0e7986 doi:10.1146/annurev.pc.46.100195.002421
  • Lee, K. F., Patterson, R. I. A., Wagner, W. and Kraft, M. 2015. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity. J. Comput. Phys. 303, 1–18. doi:10.1016/j.jcp.2015.09.031.
  • Menz, W. J., Shekar, S., Brownbridge, G. P. E., Mosbach, S., Körmer, R. and co-authors. 2012. Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study. J. Aerosol Sci. 44, 46–61. doi:10.1016/j.jaerosci.2011.10.005.
  • Olenius, T. and Riipinen, I. 2017. Molecular-resolution simulations of new particle formation. Evaluation of common assumptions made in describing nucleation in aerosol dynamics models. Aerosol Sci. Technol. 51, 397–408. doi:10.1080/02786826.2016.1262530.
  • Oxtoby, D. W. 1992. Homogeneous nucleation: Theory and experiment. J. Phys. Condens. Matter 4, 7627–7650. Online at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0013306867 &partnerID=40&md5=09ca343f82ab68294d285a20e33e88b5
  • Patterson, R. I. A., Singh, J., Balthasar, M., Kraft, M. and Norris, J. R. 2006. The linear process deferment algorithm: A new technique for solving population balance equations. SIAM J. Sci. Comput. 28, 303–320. Online at: http://www.scopus.com/inward/record.url?eid=2-s2.0-33846113883&partnerID=40&md5=7bdc70864d1e911f579ca0e81cfe24f0
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 2007. Numerical Recipes. The Art of Scientific Computing. 3rd ed. Cambridge University Press, Cambridge.
  • Svenningsson, B., Arneth, A., Hayward, S., Holst, T., Massling, A. and co-authors. 2008. Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland-forest mosaic. Tellus B Chem. Phys. Meteorol. 60, 353–364. doi:10.1111/j.1600-0889.2008.00351.x.
  • Tanaka, K. K., Kawano, A. and Tanaka, H. 2014. Molecular dynamics simulations of the nucleation of water: Determining the sticking probability and formation energy of a cluster. J. Chem. Phys. 140, 114302. doi:10.1063/1.4867909.
  • Vemury, S., Kusters, K. A. and Pratsinis, S. E. 1994. Time-lag for attainment of the self-preserving particle size distribution by coagulation. J. Colloid Interface Sci. 165, 53–59. doi:10.1006/jcis.1994.1204.
  • Wei, J. and Kruis, F. E. 2013. A GPU-based parallelized Monte-Carlo method for particle coagulation using an acceptance–rejection strategy. Chem. Eng. Sci. 104, 451–459. doi:10.1016/j.ces.2013.08.008.
  • Wyslouzil, B. E. and Wölk, J. 2016. Overview. Homogeneous nucleation from the vapor phase – The experimental science. J. Chem. Phys. 145(21), 211702. doi:10.1063/1.4962283.
  • Zhang, R., Khalizov, A., Wang, L., Hu, M. and Xu, W. 2012. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112, 1957–2011. Online at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84863338057&partnerID=40&md5= a4a3f5128beb39fd0902abd134fba850
  • Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M. Z. and Binkowski, F. S. 1999. Simulation of aerosol dynamics. A comparative review of algorithms used in air quality models. Aerosol Sci. Technol. 31, 487–514. doi:10.1080/027868299304039.
  • Zhao, H. and Kruis, F. E. 2014. Dependence of steady-state compositional mixing degree on feeding conditions in two-component aggregation. Ind. Eng. Chem. Res. 53, 6047–6055. doi:10.1021/ie500316g.
  • Zhao, H., Kruis, F. E. and Zheng, C. 2009. Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in Monte Carlo simulation of coagulation. Aerosol Sci. Technol. 43, 781–793. doi:10.1080/02786820902939708.