2,091
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system

, , , , , , , , , , , , , , , , , , , , , & show all

References

  • Aalto, T., Hatakka, J. and Lallo, M. 2007. Tropospheric methane in northern Finland: seasonal variations, transport patterns and correlations with other trace gases. Tellus B. 59, 251–259. doi: 10.1111/j.1600-0889.2007.00248.x.
  • Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T. and co-authors. 2009. Carbon dioxide exchange on a northern boreal fen. Boreal Environ. Res. 14, 699–710.
  • Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Penttilä, T. and co-authors. 2015. Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas. Boreal Environ. Res. 20, 455–473.
  • Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F. and co-authors. 2005. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmos. Chem. Phys. 5, 2431–2460. doi: 10.5194/acp-5-2431-2005.
  • Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R. L. and co-authors. 2015. Top-down estimates of European CH4 and N2O emissions based on four different inverse models. Atmos. Chem. Phys. 15, 715–736. doi: 10.5194/acp-15-715-2015.
  • Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A. and co-authors. 2018. Inverse modelling of European CH4 emissions during 2006uropean CH.519fferent inverse models and reassessed atmospheric observations. Atmos. Chem. Phys. 18, 901–920.
  • Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G. and co-authors. 2011. Source attribution of the changes in atmospheric methane for 2006–2008. Atmos. Chem. Phys. 11, 3689–3700.
  • Brühl, C. and Crutzen, P. J. 1993. MPIC Two-dimensional model. NASA Ref. Publ. 1292, 103–104.
  • Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A. and co-authors. 2014. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293.
  • Christensen, T. R., Prentice, I. C., Kaplan, J., Haxeltine, A. and Sitch, S. 1996. Methane flux from northern wetlands and tundra. Tellus B. 48, 652–661.
  • Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N. and co-authors. 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 1414.
  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V. and co-authors. 2013. Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, and co-authors). Technical report. Cambridge University Press, Cambridge. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf.
  • Cresto Aleina, F., Runkle, B. R. K., Brücher, T., Kleinen, T. and Brovkin, V. 2016. Upscaling methane emission hotspots in boreal peatlands. Geosci. Model Dev. 9, 915–926.
  • Dinsmore, K. J., Drewer, J., Levy, P. E., George, C., Lohila, A. and co-authors. 2017. Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale. Biogeosciences 14, 799–815.
  • EDGAR. 2010. Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2 FT2010. http://edgar.jrc.ec.europa.eu.
  • Emmerton, C. A., St. Louis, V. L., Lehnherr, I., Graydon, J. A., Kirk, J. L. and co-authors. 2016. The importance of freshwater systems to the net atmospheric exchange of carbon dioxide and methane with a rapidly changing high Arctic watershed. Biogeosciences 13, 5849–5863.
  • Etiope, G. and Klusman, R. W. 2002. Geologic emissions of methane to the atmosphere. Chemosphere 49, 777–789.
  • Fisher, R. E., France, J. L., Lowry, D., Lanoisellé, M., Brownlow, R. and co-authors. 2017. Measurement of the 13C isotopic signature of methane emissions from Northern European wetlands. Global Biogeochem. Cycles 31, 605–623.
  • Frolking, S. and Crill, P. 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modeling. Global Biogeochem. Cycles 8, 385–397.
  • GEA. 2012. Global Energy Assessment - Toward a Sustainable Future. International Institute for Applied Systems Analysis. Vienna, Austria and Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Granberg, G., Grip, H., Löfvenius, M. O., Sundh, I., Svensson, B. H. and co-authors. 1999. A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resour. Res. 35, 3771–3782.
  • Gregory, D., Morcrette, J.-J., Jakob, C., Beljaars, A. C. M. and Stockdale, T. 2000. Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. QJR. Meteorol. Soc. 126, 1685–1710.
  • Harris, I., Jones, P., Osborn, T. and Lister, D. 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642.
  • Hofmann, D. J., Butler, J. H., Dlugokencky, E. J., Elkins, J. W., Masarie, K. and co-authors. 2006. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus B. 58, 614–619.
  • Holgerson, M. A. and Raymond, P. A. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geosci. 9, 222–226.
  • Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J. and co-authors. 2014. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos. Chem. Phys. 14, 3991–4012.
  • Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J. and Heimann, M. 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104, 26137–26160.
  • Huttunen, J. T., Nykänen, H., Turunen, J. and Martikainen, P. J. 2003. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos. Environ. 37, 147–151.
  • Ito, A. and Inatomi, M. 2012. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9, 759–773.
  • Keronen, P., Reissell, A., Siivola, E., Vesala, T., Pohja, T. and co-authors. 2014. Accurate measurements of CO2 mole fraction in the atmospheric surface layer by an affordable instrumentation. Boreal Environ. Res. 19, 35–54.
  • Kilkki, J., Aalto, T., Hatakka, J., Portin, H. and Laurila, T. 2015. Atmospheric CO2 observations at Finnish urban and rural sites. Boreal Environ. Res. 20, 227–242.
  • Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G. and co-authors. 2013. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823.
  • Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A. and co-authors. 2005. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 5, 417–432.
  • Lerner, J., Matthews, E. and Fung, I. 1988. Methane emission from animals: A global high-resolution data base. Global Biogeochem. Cycle. 2, 139–156.
  • Leskinen, A., Portin, H., Komppula, M., Miettinen, P., Arola, A. and co-authors. 2009. Overview of the research activities and results at Puijo semi-urban measurement station. Boreal Environ. Res. 14, 576–590.
  • Lohila, A., Minkkinen, K., Aurela, M., Tuovinen, J.-P., Penttilä, T. and co-authors. 2011. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8, 3203–3218.
  • Lohila, A., Penttilä, T., Jortikka, S., Aalto, T., Anttila, P. and co-authors. 2015. Preface to the special issue on integrated research of atmosphere, ecosystems and environment at Pallas. Boreal Environ. Res. 20, 431–454.
  • Lohila, A., Aalto, T., Aurela, M., Hatakka, J., Tuovinen, J.-P. and co-authors. 2016. Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year. Geophys. Res. Lett. 43, 2946–2953.
  • McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E. and co-authors. 2012. An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204.
  • McNorton, J., Chipperfield, M. P., Gloor, M., Wilson, C., Feng, W. and co-authors. 2016. Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006. Atmos. Chem. Phys. 16, 7943–7956.
  • Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W. T. and co-authors. 2005. Likelihood estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions. J. Geophys. Res. 110. doi: 10.1029/2005JD005970.
  • Minkkinen, K., Korhonen, R., Savolainen, I. and Laine, J. 2002. Carbon balance and radiative forcing of Finnish peatlands 1900–2100 – The impact of forestry drainage. Global Change Biol. 8, 785–799.
  • Mitchell, T. D. and Jones, P. D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712.
  • Monni, S. and Benviroc Ltd. 2013. Finland’s Sixth National Communication under the United Nations Framework Convention on Climate Change. Technical report. Ministry of the Environment and Statistics Finland, Helsinki, 314 pp. https://www.stat.fi/tup/khkinv/fi_nc6.pdf.
  • Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D. and co-authors. 2013. Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations. J. Geophys. Res. Atmos. 118, 11807–11823.
  • Montzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Jockel, P. and co-authors. 2011. Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69.
  • Moore, T. R., Heyes, A. and Roulet, N. T. 1994. Methane emissions from wetlands, southern Hudson Bay lowland. J. Geophys. Res. 99, 1455–1467.
  • Moore, T. R., Roulet, N. T. and Waddington, J. M. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40, 229–245.
  • Nykänen, H., Alm, J., Silvola, J., Tolonen, K. and Martikainen, P. J. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochem. Cycles 12, 53–69.
  • Olivier, J. and Janssens-Maenhout, G. 2012. CO2 Emissions from Fuel Combustion. 2012 ed. Part III: Greenhouse-Gas Emissions. OECD Publishing, Paris. https://www.pbl.nl/en/publications/2012/co2-emissions-from-fuel-combustion-2012-edition.
  • Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A. and co-authors. 2005. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. 110, D24304.
  • Petrescu, A. M. R., van Beek, L. P. H., van Huissteden, J., Prigent, C., Sachs, T. and co-authors. 2010. Modeling regional to global CH4 emissions of boreal and arctic wetlands. Global Biogeochem. Cycles 24, GB4009.
  • Ravela, S. and McLaughlin, D. 2007. Fast ensemble smoothing. Ocean Dyn. 57, 123–134.
  • Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L. and co-authors. 2008. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805.
  • Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D. and co-authors. 2017. Role of atmospheric oxidation in recent methane growth. Proc. Natl. Acad. Sci. USA 114, 5373–5377.
  • Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S. and co-authors. 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B. 59, 449–457.
  • Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T. and co-authors. 2007. Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus B. 59, 838–852.
  • Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P. and co-authors. 2016. The global methane budget 2000.x.11. Earth Syst. Sci. Data 8, 697–751.
  • Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G. W. and co-authors. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352, 80–84.
  • Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope, G. and co-authors. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91.
  • Smith, B., Prentice, I. C. and Sykes, M. T. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeogr. 10, 621–637. 2001.t01-1-00256.x.
  • Spahni, R., Joos, F., Stocker, B. D., Steinacher, M. and Yu, Z. C. 2013. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: From the last glacial maximum to the 21st century. Clim. Past 9, 1287–1308.
  • Statistics Finland. 2015. Finland’s Second Biennial Report under the UNFCCC. Technical report. Ministry of the Environment and Statistics Finland. 82 pp. https://unfccc.int/files/national_reports/biennial_reports_and_iar/submitted_biennial_reports/application/pdf/fi_br2_tk_20151217_final.pdf.
  • Statistics Finland PX-Web regional database. n.d. Regional Greenhouse Gas Emissions, Data on Non-Emissions Trading Scheme by Region, Emission Category, Year and Data. http://pxnet2.stat.fi/PXWebPXWeb/pxweb/fi/StatFin/StatFin__ymp__khki/020_khki_tau_102.px/.
  • Stocker, B. D., Spahni, R. and Joos, F. 2014. DYPTOP: A cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev. 7, 3089–3110.
  • Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N. and co-authors. 2015. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 15, 10529–10566.
  • Tarnocai, C., Swanson, D., Kimble, J. and Broll, G. 2007. Northern Circumpolar Soil Carbon Database, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Canada. http://wms1.agr.gc.ca/NortherCircumpolar/northercircumpolar.zip.
  • Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T., Worthy, D. and co-authors. 2017. Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572.
  • Thonat, T., Saunois, M., Bousquet, P., Pison, I., Tan, Z. and co-authors. 2017. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements. Atmos. Chem. Phys. Discuss. 2017, 1–35.
  • Tsuruta, A., Aalto, T., Backman, L., Hakkarainen, J., van der Laan-Luijkx, I. T. and co-authors. 2017. Global methane emission estimates for 2000 six sites CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 10, 1261–1289.
  • Turner, A. J., Frankenberg, C., Wennberg, P. O. and Jacob, D. J. 2017. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl. Acad. Sci. USA 114, 5367–5372.
  • van der Laan-Luijkx, I. T., van der Velde, I. R., van der Veen, E., Tsuruta, A., Stanislawska, K. and co-authors. 2017. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: Implementation and global carbon balance 2001–2015. Geosci. Model Dev. Discuss. 2017, 1–30.
  • Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. and Chapin, F. S. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75.
  • Wania, R., Ross, I. and Prentice, I. C. 2009. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochem. Cycles 23. doi: 10.1029/2008GB003413.
  • Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B. and co-authors. 2013. Present state of global wetland extent and wetland methane modelling: Methodology of a model inter-comparison project (WETCHIMP). Geosci. Model Dev. 6, 617–641.