1,148
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The role of ASM on the formation and properties of cirrus clouds over the Tibetan Plateau

, , , , , , , & show all

References

  • Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G. and co-authors. 2013. Clouds and aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley) Cambridge University Press, Cambridge, UK.
  • Chen, B. and Liu, X. 2005. Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophys. Res. Lett. 32, L01804.
  • Chen, W., Chiang, C. and Nee, J. 2002. Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt. 41, 6470–6476. DOI: 10.1364/AO.41.006470
  • Chen, Y., Kreidenweis, S. M., McInnes, L. M., Rogers, D. C. and DeMott, P. J. 1998. Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett. 25, 1391–1394. DOI: 10.1029/97GL03261
  • Clothiaux, E. E., Mace, G. G., Ackerman, T. P., Kane, T. J., Spinhirne, J. D. and co-authors. 1998. An automated algorithm for detection of hydrometeor returns in micropulse lidar data. J. Atmos. Ocean. Technol. 15, 1035–1042. DOI: 10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2
  • Comstock, J. M. and Sassen, K. 2001. Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Ocean. Technol. 18, 1658–1673. DOI: 10.1175/1520-0426(2001)018<1658:ROCCRA>2.0.CO;2
  • Comstock, J. M., Ackerman, T. P. and Mace, G. G. 2002. Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res. 107, 4714.
  • Cziczo, D. J. and Froyd, K. D. 2014. Sampling the composition of cirrus ice residuals. Atmos. Res. 142, 15–31. DOI: 10.1016/j.atmosres.2013.06.012
  • Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M. and co-authors. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340, 1320–1324. DOI: 10.1126/science.1234145
  • DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M. and co-authors. 2003b. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 100, 14655–14660. DOI: 10.1073/pnas.2532677100
  • DeMott, P. J., Kenneth, S., Poellot, M. R., Darrel, B., Rogers, D. C. and co-authors. 2003a. African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett. 30, 291–305.
  • Fahey, D. W. and Schumann, U. 1999. Aviation-produced Aerosols and Cloudiness. In: Aviation and the Global Atmosphere (ed. J. E. Penner), Cambridge University Press, Cambridge, UK, 65–120.
  • Frey, W., Borrmann, S., Kunkel, D., Weigel, R., de Reus, M. and co-authors. 2011. In-situ measurements of tropical cloud properties in the west african monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus. Atmos. Chem. Phys. 11(12), 5569–5590, DOI: 10.5194/acp-11-5569-2011
  • Froyd, K. D., Murphy, D. M., Lawson, P., Baumgardner, D. and Herman, R. L. 2010. Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys. 10, 209–218. DOI: 10.5194/acp-10-209-2010
  • Fu, Q. and Liou, K. N. 1993. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 50, 2008–2025. DOI: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
  • Fu, Q., Baker, M. and Hartmann, D. L. 2002. Tropical cirrus and water vapor: An effective earth infrared iris feedback? Atmos. Chem. Phys 2, 1–7.
  • Fu, R., Hu, Y., Wright, J. S., Jiang, J. H., Dickinson, R. E. and co-authors. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Nat. Acad. Sci. USA 103, 5664–5669. DOI: 10.1073/pnas.0601584103
  • Fujiwara, M., Iwasaki, S., Shimizu, A., Inai, Y., Shiotani, M. and co-authors. 2009. Cirrus observations in the tropical tropopause layer over the western Pacific. J. Geophys. Res. 114, D09304.
  • Gallagher, M. W., Connolly, P. J., Crawford, I., Heymsfield, A., Bower, K. N. and co-authors. 2012. Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions. Atmos. Chem. Phys. 12, 6609–6628. DOI: 10.5194/acp-12-6609-2012
  • Gao, B. C., Yang, P., Guo, G. and Park, S. K. 2003. Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Trans. Geosci. Remote Sens. 41, 895–900.
  • He, Q. S., Li, C. C., Ma, J. Z., Wang, H. Q., Shi, G. M. and co-authors. 2013. The properties and formation of cirrus clouds over the Tibetan Plateau based on summertime lidar measurements. J. Atmos. Sci. 70, 901–915. 2013. DOI: 10.1175/JAS-D-12-0171.1
  • Jensen, E. and Toon, O. 1994. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate. Geophys. Res. Lett. 21, 2019–2022. DOI: 10.1029/94GL01287
  • Jin, M. L. 2006. MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau. Geophys. Res. Lett. 33, L19707. DOI: 10.1029/2006GL026713
  • Kar, J., Bremer, H., Drummond, J. R., Rochon, Y. J., Jones, D. B. A. and co-authors. 2004. Evidence of vertical transport of carbon monoxide from Measurements of Pollution in the Troposphere (MOPITT). Geophys. Res. Lett. 31, 203–218.
  • Kienast-Sjögren, E., Rolf, C., Seifert, P., Krieger, U. K., Luo, B. P. and co-authors. 2016. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements. Atmos. Chem. Phys. 16, 7605–7621. DOI: 10.5194/acp-16-7605-2016
  • Kim, J. E. and Alexander, M. J. 2015. Direct impacts of waves on tropical cold point tropopause temperature. Geophys. Res. Lett. 42, 1584–1592. DOI: 10.1002/2014GL062737
  • Kim, J.-E., Alexander, M. J., Bui, T. P., Dean-Day, J. M., Lawson, R. P. and co-authors. 2016. Ubiquitous influence of waves on tropical high cirrus clouds. Geophys. Res. Lett. 43, 5895–5901. DOI: 10.1002/2016GL069293
  • Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N. and co-authors. 2016. A microphysics guide to cirrus clouds – Part 1: Cirrus types. Atmos. Chem. Phys. 16, 3463–3483. DOI: 10.5194/acp-16-3463-2016
  • Krishnakumar, V., Satyanarayana, M., Radhakrishnan, S. R., Dhaman, R. K., Jayeshlal, G. S. and co-authors. 2014. Lidar investigations on the optical and dynamical properties of cirrus clouds in the upper troposphere and lower stratosphere regions at a tropical station, Gadanki, India (13.5°N, 79.2°E). J. Appl. Remote Sens. 8, 083659. DOI: 10.1117/1.JRS.8.083659
  • Li, Q., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J. and co-authors. 2005. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett. 32, 337–349.
  • Liebmann, B. and Smith, C. A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc. 77, 1275–1277.
  • Liou, K. N. 1986. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Weather Rev. 114, 1167–1199. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2
  • Liu, C. and Zipser, E. J. 2005. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. 110, D23104. DOI: 10.1029/2005JD006063
  • Luebke, A. E., Afchine, A., Costa, A., Grooß, J.-U., Meyer, J. and co-authors. 2016. The origin of midlatitude ice clouds and the resulting influence on their microphysical properties. Atmos. Chem. Phys. 16, 5793–5809. DOI: 10.5194/acp-16-5793-2016
  • Lynch, D. K., Sassen, K., Starr, D. C. and Stephens, G. 2002. Cirrus. Oxford University Press, New York.
  • Martinsson, B. G., Friberg, J., Andersson, S. M., Weigelt, A., Hermann, M. and co-authors. 2014. Comparison between CARIBIC aerosol samples analyzed by accelerator-based methods and optical particle counter measurements. Atmos. Meas. Tech. 7, 2581–2596, DOI: 10.5194/amt-7-2581-2014
  • Massie, S. A., Gettelman, W. R. and Baumgardner, D. 2002. Distribution of tropical cirrus in relation to convection. J. Geophys. Res. 107, 4591.
  • McFarquhar, G. M., Heymsfield, A. J., Spinhirne, J. and Hart, B. 2000. Thin and subvisual tropopause tropical cirrus: Observations and radiative impact. J. Atmos. Sci. 57, 1841–1853. DOI: 10.1175/1520-0469(2000)057<1841:TASTTC>2.0.CO;2
  • Noel, V., Winker, D. M., Garrett, T. J. and McGill, M. 2007. Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE. Atmos. Chem. Phys. 7, 1415–1422. DOI: 10.5194/acp-7-1415-2007
  • Pan, L. L. and Munchak, L. A. 2011. Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res. 116, D12201. DOI: 10.1029/2010JD015462
  • Pandit, A. K., Gadhavi, H., Ratnam, M. V., Jayaraman, A., Raghunath, K. and co-authors. 2014. Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends. J. Atmos. Solar-Terrestrial Phys. 121, 248–256. DOI: 10.1016/j.jastp.2014.07.008
  • Park, M., Emmons, L. K., Bernath, P. F., Walker, K. A. and Boone, C. D. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos. Chem. Phys. 8, 757–764. DOI: 10.5194/acp-8-757-2008
  • Park, M., Randel, W. J., Emmons, L. K. and Livesey, N. J. 2009. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from model of ozone and related tracers (MOZART). J. Geophys. Res. 114, D08303.
  • Park, M., Randel, W. J., Gettelman, A., Massie, S. T. and Jiang, J. H. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res. 112, 355–362.
  • Park, M., Randel, W. J., Kinnison, D. E., Garcia, R. R. and Choi, W. 2004. Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res. 109, D03302.
  • Randel, W. J. and Jensen, E. J. 2013. Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci. 6, 169–176. DOI: 10.1038/ngeo1733
  • Randel, W. J. and Park, M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res. 111, 2503–2511.
  • Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P. and co-authors. 2010. Asian monsoon transport of pollution to the stratosphere. Science 328, 611–633. DOI: 10.1126/science.1182274
  • Richardson, M. S., Demott, P. J., Kreidenweis, S. M., Cziczo, D. J. and Dunlea, E. J. 2007. Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res. 112, 575–586.
  • Rogers, D. C., DeMott, P. J., Kreidenweis, S. M. and Chen, Y. 1998. Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett. 25, 1383–1386. DOI: 10.1029/97GL03478
  • Schnaiter, M., Järvinen, E., Vochezer, P., Abdelmonem, A., Wagner, R. and co-authors. 2016. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos. Chem. Phys. 16, 5091–5110. DOI: 10.5194/acp-16-5091-2016
  • Seifert, P., Ansmann, A., Muâller, D., Wandinger, U., Althausen, D. and co-authors. 2007. Cirrus optical properties observed with lidar, radiosonde and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon. J. Geophys. Res. 112, D17205. DOI: 10.1029/2006JD008352
  • Stephens, G. L. and Webster, P. J. 1981. Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci. 38, 235–247. DOI: 10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2
  • Sunilkumar, S. V. and Parameswaran, K. 2005. Temperature dependence of tropical cirrus properties and radiative effects. J. Geophys. Res. 110, D13205. DOI: 10.1029/2004JD005426
  • Thampi, B. V., Sunilkumar, S. V. and Parameswaran, K. 2009. Lidar studies of particulates in the UTLS region at a tropical station over the Indian subcontinent. J. Geophys. Res. 114, D08207.
  • Thomason, L. W. and Vernier, J. P. 2013. Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989-2005. Atmos. Chem. Phys. 13, 4605–4616. DOI: 10.5194/acp-13-4605-2013
  • Tobo, Y., Zhang, D. Z., Iwasaka, Y. and Shi, G. Y. 2007. On the mixture of aerosols and ice clouds over the Tibetan Plateau: Results of a balloon flight in the summer of 1999. Geophys. Res. Lett. 34, L23801.
  • Vernier, J. P., Thomason, L. W. and Kar, J. 2011. CALIPSO detection of an Asian tropopause aerosol layer. Geophys. Res. Lett. 38, 1451–1453.
  • Vernier, J. P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J. and co-authors. 2015. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res. Atmos. 120, 1608–1619, DOI: 10.1002/2014JD022372
  • Wang, X., Boselli, A., D’Avino, L., Velotta, R., Spinelli, N. and co-authors. 2005. An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signals. Appl. Phys. B 80, 609–615. DOI: 10.1007/s00340-005-1765-x
  • Wernli, H., Boettcher, M., Joos, H., Miltenberger, A. K. and Spichtinger, P. 2016. A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track. Geophys. Res. Lett. 43, 6657–6664. DOI: 10.1002/2016GL068922
  • Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A. and co-authors. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323. DOI: 10.1175/2009JTECHA1281.1
  • WMO 1957. Meteorology – A three-dimensional science. WMO Bull. 6, 134–138.,
  • Wolf, V., Kuhn, T., Milz, M., Voelger, P., Krämer, M. and co-authors. 2018. Arctic ice clouds over northern Sweden: microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI. Atmos. Chem. Phys. 18(23), 17371–17386.
  • Xiong, X., Houweling, S., Wei, J., Maddy, E., Sun, F. and co-authors. 2009. Methane plume over south Asia during the monsoon season: satellite observation and model simulation. Atmos. Chem. Phys. 9, 783–794. DOI: 10.5194/acp-9-783-2009
  • Zerefos, C. S., Eleftheratos, K., Balis, D. S., Zanis, P., Tselioudis, G. and co-authors. 2003. Evidence of impact of aviation on cirrus cloud formation. Atmos. Chem. Phys. 3, 1633–1644. DOI: 10.5194/acp-3-1633-2003
  • Zhang, Y., Macke, A. and Albers, F. 1999. Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing. Atmos. Res. 52, 59–75. DOI: 10.1016/S0169-8095(99)00026-5