1,138
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Aqueous-phase reactions occurred in the PM2.5 cumulative explosive growth during the heavy pollution episode (HPE) in 2016 Beijing wintertime

, , , , , & show all

References

  • Behera, S. N., Sharma, M., Aneja, V. P. and Balasubramanian, R. 2013. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20, 8092–8131. doi:10.1007/s11356-013-2051-9
  • Che, H. C., Zhang, X. Y., Wang, Y. Q., Zhang, L. and Shen, X. J. and co-authors. 2016. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions. Sci. Rep. 6, 24497. doi:10.1038/srep24497
  • Chen, X., Zhang, L-W., Huang, J-J., Song, F-J., Zhang, L-P. and co-authors. 2016. Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China. Sci. Total Environ. 571, 855–861. doi:10.1016/j.scitotenv.2016.07.064
  • Chen, Y. and Xie, S. D. 2014. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China. Sci. Total Environ. 473, 507–517.
  • Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B. and co-authors. 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2, e1601530. doi:10.1126/sciadv.1601530.
  • Du, H., Kong, L., Cheng, T., Chen, J., Du, J. and co-authors. 2011. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos. Environ. 45, 5131–5137. doi:10.1016/j.atmosenv.2011.06.027
  • Duan, F. K., Liu, X. D., Yu, T. and Cachier, H. 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 38, 1275–1282. doi:10.1016/j.atmosenv.2003.11.037
  • Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H. and co-authors. 2014. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479. doi:10.1038/nature13032
  • Fountoukis, C. and Nenes, A. 2007. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh(4)(+)-Na+-SO42–NO3–Cl–H2O aerosols. Atmos. Chem. Phys. 7, 4639–4659. doi:10.5194/acp-7-4639-2007
  • Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K. and co-authors. 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ. 42, 2023–2036. doi:10.1016/j.atmosenv.2007.12.002
  • Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J. and Nenes, A. 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 15, 2775–2790. doi:10.5194/acp-15-2775-2015
  • Hou, S., Tong, S., Ge, M. and An, J. 2016. Comparison of atmospheric nitrous acid during severe haze and clean periods in Beijing, China. Atmos. Environ. 124, 199–206. doi:10.1016/j.atmosenv.2015.06.023
  • Hu, G., Zhang, Y., Sun, J., Zhang, L. and Shen, X. and co-authors 2014. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos. Res. 145, 1–11.
  • Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J. and co-authors. 2014a. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222. doi:10.1038/nature13774
  • Huang, X., Song, Y., Zhao, C., Li, M. M. Zhu, T. and co-authors 2014b. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China. J. Geophys. Res. -Atmos. 119, 14165–14179. doi:10.1002/2014JD022301
  • Ji, D., Li, L., Wang, Y., Zhang, J., Cheng, M. and co-authors. 2014. The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation. Atmos. Environ. 92, 546–556. doi:10.1016/j.atmosenv.2014.04.048
  • Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q. and co-authors. 2009. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529. doi:10.1126/science.1180353
  • Khlystov, A., Stanier, C. O., Takahama, S. and Pandis, S. N. 2005. Water content of ambient aerosol during the Pittsburgh air quality study. J. Geophys. Res. -Atmos. 110, 10.
  • Leng, C., Duan, J., Xu, C., Zhang, H., Zhang, Q. and co-authors. 2015. Insights into a historic severe haze weather in Shanghai: Synoptic situation, boundary layer and pollutants. Atmos. Chem. Phys. Discuss. 15, 32561–32605. doi:10.5194/acpd-15-32561-2015
  • Pöschl, U. and Shiraiwa, M. 2015. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the Anthropocene. Chem. Rev. 115, 4440–4475. doi:10.1021/cr500487s
  • Pathak, R. K., Wang, T. and Wu, W. S. 2011. Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning. Atmos. Environ. 45, 1183–1191. doi:10.1016/j.atmosenv.2010.09.003
  • Seinfeld, J. H. and Pandis, S. N. 1986. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, USA.
  • Sun, Y. L., Zhuang, G. S., Tang, A. H., Wang, Y. and An, Z. S. 2006. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 40, 3148–3155. doi:10.1021/es051533g
  • Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T. and co-authors. 2013. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ. 77, 927–934. doi:10.1016/j.atmosenv.2013.06.019
  • Tie, X. X., Wu, D. and Brasseur, G. 2009. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ. 43, 2375–2377. doi:10.1016/j.atmosenv.2009.01.036
  • Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y. and co-authors. 2015. Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014. Sci. China Chem. 58, 1393–1402. doi:10.1007/s11426-015-5454-2
  • Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y. and co-authors. 2016. Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: Direct emissions and heterogeneous production in urban and suburban areas. Faraday Discuss. 189, 213–230. doi:10.1039/C5FD00163C
  • Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M. and co-authors. 2016. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA. 113, 13630–13635. doi:10.1073/pnas.1616540113
  • Wang, Y., Zhuang, G. S., Sun, Y. L. and An, Z. S. 2006. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 40, 6579–6591. doi:10.1016/j.atmosenv.2006.05.066
  • Wang, Z. L., Zhang, H. and Zhang, X. Y. 2015. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect. Atmos. Chem. Phys. 15, 3671–3685. doi:10.5194/acp-15-3671-2015
  • Wexler, A. S. and Seinfeld, J. H. 1991. Second-generation inorganic aerosol model. Atmos. Environ. Part A. General Top. 25, 2731–2748. doi:10.1016/0960-1686(91)90203-J
  • Wu, W. S. and Wang, T. 2007. On the performance of a semi-continuous PM2.5 sulphate and nitrate instrument under high loadings of particulate and sulphur dioxide. Atmos. Environ. 41, 5442–5451. doi:10.1016/j.atmosenv.2007.02.025
  • Xie, Y., Ding, A., Nie, W., Mao, H., Qi, X. and co-authors. 2015. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. J. Geophys. Res. Atmos. 120, 12679–12694. doi:10.1002/2015JD023607
  • Yang, F., Tan, J., Zhao, Q., Du, Z., He, K. and co-authors. 2011. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 11, 5207–5219. doi:10.5194/acp-11-5207-2011
  • Yang, Y., Liu, X., Qu, Y., Wang, J., An, J. and co-authors. 2015. Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmos. Res. 155, 192–203. doi:10.1016/j.atmosres.2014.11.023
  • Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T. and co-authors. 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 36, 4223–4234. doi:10.1016/S1352-2310(02)00342-4
  • Zhang, T., Cao, J. J., Tie, X. X., Shen, Z. X., Liu, S. X. and co-authors. 2011. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmos. Res. 102, 110–119. doi:10.1016/j.atmosres.2011.06.014
  • Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H. C. and co-authors. 2015a. Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmos. Chem. Phys. Discuss. 15, 2853–2904. doi:10.5194/acpd-15-2853-2015
  • Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q. and co-authors. 2015b. Formation of urban fine particulate matter. Chem. Rev. 115, 3803–3855. doi:10.1021/acs.chemrev.5b00067
  • Zhang, Y. W., Zhang, X. Y., Zhang, Y. M., Shen, X. J., Sun, J. Y. and co-authors. 2015c. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution. Sci. Total Environ. 538, 7–15. doi:10.1016/j.scitotenv.2015.06.104
  • Zhang, R., Sun, X., Shi, A., Huang, Y., Yan, J. and co-authors. 2018. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 177, 275–282. doi:10.1016/j.atmosenv.2017.12.031
  • Zhang, Y. M., Zhang, X. Y., Sun, J. Y., Hu, G. Y., Shen, X. J. and co-authors. 2014. Chemical composition and mass size distribution of PM1.0 at an elevated site in central east China. Atmos. Chem. Phys. Discuss. 14, 15191–15218. doi:10.5194/acpd-14-15191-2014
  • Zhang, W., Tong, S., Ge, M., An, J., Shi, Z. and co-authors. 2019. Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Sci. Total Environ. 648, 253–262. doi:10.1016/j.scitotenv.2018.08.133
  • Zhong, J., Zhang, X., Wang, Y., Sun, J., Zhang, Y. and co-authors. 2017. Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the Red-Alert heavy pollution episodes in Beijing in December 2016. J. Meteorol. Res. 31, 809–819. doi:10.1007/s13351-017-7088-0
  • Zhou, Y., Wang, T., Gao, X., Xue, L., Wang, X. and co-authors. 2009. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 ma.s.l.) in central-eastern China. J. Atmos. Chem. 64, 107–127. doi:10.1007/s10874-010-9172-z