1,895
Views
10
CrossRef citations to date
0
Altmetric
Research Article

The main controls of the precipitation stable isotopes at Kathmandu, Nepal

ORCID Icon, , , &
Pages 1-17 | Received 17 Jun 2019, Accepted 16 Dec 2019, Published online: 10 Feb 2020

References

  • Araguás-Araguás, L., Froehlich, K. and Rozanski, K. 1998. Stable isotope composition of precipitation over Southeast Asia. J. Geophys. Res. 103, 28721–28742. doi:10.1029/98JD02582
  • Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C. and co-authors. 2014. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J. Geophys. Res. Atmos. 119, 584–593. doi:10.1002/2013JD020535
  • Bershaw, J., Penny, S. M. and Garzione, C. N. 2012. Stable isotopes of modern water across the Himalaya and eastern Tibetan plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res. Atmos. 117, n/a–18. doi:10.1029/2011JD016132
  • Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K. and co-authors. 2010. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett. 292, 212–220. doi:10.1016/j.epsl.2010.01.038
  • Cai, Z. and Tian, L. 2016. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian Monsoon region. J. Climate 29, 1339–1352. doi:10.1175/JCLI-D-15-0363.1
  • Chakraborty, S., Sinha, N., Chattopadhyay, R., Sengupta, S. and Mohan, P. M. and co-authors. 2016. Atmospheric controls on the precipitation isotopes over the Andaman Islands. Bay of Bengal. Sci. Rep. 6, 1–11.
  • Chen, F., Zhang, M., Wang, S., Qiu, X. and Du, M. 2017. Environmental controls on stable isotopes of precipitation in Lanzhou, China: An enhanced network at city scale. Sci. Total Environ. 609, 1013–1022. doi:10.1016/j.scitotenv.2017.07.216
  • Chhetri, T. B., Yao, T., Yu, W., Ding, L., Joswiak, D. and co-authors. 2014. Stable isotopic compositions of precipitation events from Kathmandu, southern slope of the Himalayas. Chin. Sci. Bull. 59, 4838–4846. doi:10.1007/s11434-014-0547-4
  • Clark, I. and Fritz, P. 1997. The environmental isotopes. Environ. Isot. Hydrogeol 2.
  • Craig, H. 1961. Isotopic variations in meteoric waters. Science. 133, 1702–1703. doi:10.1126/science.133.3465.1702
  • Crawford, J., Hollins, S. E., Meredith, K. T. and Hughes, C. E. 2017. Precipitation stable isotope variability and sub-cloud evaporation processes in a semi-arid region. Hydrol. Process. 31, 20–34. doi:10.1002/hyp.10885
  • Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus. 16, 436–468.
  • Draxler, R. R. and Hess, G. D. 1998. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 47, 295–308.
  • Froehlich, K., Gibson, J. J. and Aggarwal, P. K. 2001. Deuterium excess in precipitation and its climatological significance. In: Proceedings of Study of Environmental Change Using Isotope Techniques, Vienna, IAEA, 54–66.
  • Gadgil, S. 2003. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 31, 429–467. doi:10.1146/annurev.earth.31.100901.141251
  • Gao, J., Masson-Delmotte, V., Yao, T., Tian, L., Risi, C. and co-authors. 2011. Precipitation water stable isotopes in the South Tibetan plateau: Observations and modeling. J. Climate 24, 3161–3178. doi:10.1175/2010JCLI3736.1
  • Gao, J., Masson-Delmotte, V., Risi, C., He, Y. and Yao, T. 2013. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B Chem. Phys. Meteorol. 65, 21043. doi:10.3402/tellusb.v65i0.21043
  • He, S. and Richards, K. 2016. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture. J. Hydrol. 540, 615–622. doi:10.1016/j.jhydrol.2016.06.046
  • He, Y., Risi, C., Gao, J., Masson-Delmotte, V., Yao, T. and co-authors. 2015. Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data and atmospheric general circulation modeling. J. Geophys. Res. Atmos. 120, 3852–3871. doi:10.1002/2014JD022180
  • Jouzel, J., Delaygue, G., Landais, A., Masson-Delmotte, V., Risi, C. and co-authors. 2013. Water isotopes as tools to document oceanic sources of precipitation. Water Resour. Res. 49, 7469–7486. doi:10.1002/2013WR013508
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77, 437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  • Karki, R., Talchabhadel, R., Aalto, J. and Baidya, S. K. 2016. New climatic classification of Nepal. Theor. Appl. Climatol. 125, 799–808. doi:10.1007/s00704-015-1549-0
  • Klein, E. S., Cherry, J. E., Young, J., Noone, D. and Leffler, A. J. and co-authors. 2013. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice. Nat. Publ. Gr 1–9. Online at:.
  • Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S. and co-authors. 2009. Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting 24, 1691–1705. doi:10.1175/2009WAF2222201.1
  • Lachniet, M. S. and Patterson, W. P. 2002. Stable isotope values of Costa Rican surface waters. J. Hydrol. 260, 135–150. doi:10.1016/S0022-1694(01)00603-5
  • Lekshmy, P. R., Midhun, M., Ramesh, R. and Jani, R. A. 2014. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall. Sci. Rep. 4, 1–5.
  • Liu, Z., Tian, L., Yao, T. and Yu, W. 2008. Seasonal deuterium excess in Nagqu precipitation: Influence of moisture transport and recycling in the middle of Tibetan Plateau. Environ. Geol. 55, 1501–1506. doi:10.1007/s00254-007-1100-4
  • Munksgaard, N. C., Wurster, C. M., Bass, A. and Bird, M. I. 2012. Extreme short-term stable isotope variability revealed by continuous rainwater analysis. Hydrol. Process. 26, 3630–3634. doi:10.1002/hyp.9505
  • Pang, Z., Kong, Y., Froehlich, K., Huang, T., Yuan, L. and co-authors. 2011. Processes affecting isotopes in precipitation of an arid region. Tellus, Ser. B Chem. Phys. Meteorol. 63, 352–359. doi:10.1111/j.1600-0889.2011.00532.x
  • Pape, J. R., Banner, J. L., Mack, L. E., Musgrove, M. L. and Guilfoyle, A. 2010. Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. J. Hydrol. 385, 203–215. doi:10.1016/j.jhydrol.2010.02.021
  • Peng, H., Mayer, B., Harris, S. and Krouse, H. R. 2007. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus B: Chem. Phys. Meteorol. 59, 698–704. doi:10.1111/j.1600-0889.2007.00291.x
  • Permana, D. S., Thompson, L. G. and Setyadi, G. 2016. Tropical West Pacific moisture dynamics and climate controls on rainfall isotopic ratios in southern Papua, Indonesia. J. Geophys. Res. Atmos. 121, 2222–2245. doi:10.1002/2015JD023893
  • Pfahl, S. and Sodemann, H. 2014. What controls deuterium excess in global precipitation? Clim. Past 10, 771–781. doi:10.5194/cp-10-771-2014
  • Ren, W., Yao, T. and Xie, S. 2017. Key drivers controlling the stable isotopes in precipitation on the leeward side of the central Himalayas. Atmos. Res. 189, 134–140. doi:10.1016/j.atmosres.2017.01.020
  • Ren, W., Yao, T., Xie, S. and He, Y. 2016. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau. J. Hydrol. 545, 276–287. doi:10.1016/j.jhydrol.2016.12.034
  • Risi, C., Bony, S. and Vimeux, F. 2008. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res. 113, 1–12.
  • Rozanski, K., Araguas-Araguas, L. and Gonfiantini, R. 1992. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science. 258, 981–985. doi:10.1126/science.258.5084.981
  • Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R. 1993. Isotopic patterns in modern global precipitation. In: Climate Change in Continental Isotopic Records. Geophysical Monograph (eds. P. K. Swart, K. C. Lohmann, J. McKenzie, S. Savin). Vol. 78, American Geo-Physical Union, Washington, DC, pp. 1–36.
  • Salamalikis, V., Argiriou, A. A. and Dotsika, E. 2016. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Sci. Total Environ. 544, 1059–1072. doi:10.1016/j.scitotenv.2015.11.072
  • Sánchez-Murillo, R., Esquivel-Hernández, G., Welsh, K., Brooks, E. S., Boll, J. and co-authors. 2013. Spatial and temporal variation of stable isotopes in precipitation across Costa Rica: an analysis of historic GNIP records. Ojmh. 03, 226–240. doi:10.4236/ojmh.2013.34027
  • Saranya, P., Krishan, G., Rao, M. S., Kumar, S. and Kumar, B. 2018. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems. J. Hydrol. 557, 679–687. doi:10.1016/j.jhydrol.2017.12.061
  • Shrestha, A. B., Wake, C. P., Dibb, J. E. and Mayewski, P. A. 2000. Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int. J. Climatol. 20, 317–327. doi:10.1002/(SICI)1097-0088(20000315)20:3<317::AID-JOC476>3.0.CO;2-G
  • Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T. and Jouzel, J. 2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res. 106, 28081–28088. doi:10.1029/2001JD900186
  • Wei, Z., Lee, X., Liu, Z., Seeboonruang, U., Koike, M. and co-authors. 2018. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia. Earth Planet. Sci. Lett. 488, 181–192. doi:10.1016/j.epsl.2018.02.015
  • Wu, H., Zhang, X., Xiaoyan, L., Li, G. and Huang, Y. 2015. Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region. Hydrol. Process. 29, 90–102. doi:10.1002/hyp.10132
  • Xie, L., Wei, G., Deng, W. and Zhao, X. 2011. Daily δ18O and δD of precipitations from 2007 to 2009 in Guangzhou, South China: Implications for changes of moisture sources. J. Hydrol. 400, 477–489. doi:10.1016/j.jhydrol.2011.02.002
  • Yang, X., Yao, T., Yang, W., Yu, W. and Qu, D. 2011. Co-existence of temperature and amount effects on precipitation  δ18O in the Asian monsoon region. Geophys. Res. Lett. 38, n/a–6. doi:10.1029/2010GL045993
  • Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y. and co-authors. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim. Change 2, 663–667. doi:10.1038/nclimate1580
  • Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X. and co-authors. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observation and simulations. Rev. Geophys. 51, 525–548. doi:10.1002/rog.20023
  • Yao, T., Masson, V., Jouzel, J., Stievenard, M. Sun, W. and co-authors. 1999. Relationship between δ18O in precipitation and surface air temperature in the Urumqi river basin, east Tianshan mountains, China. Geophys. Res. Lett. 26, 3473–3476.
  • Yu, W., Yao, T., Lewis, S., Tian, L., Ma, Y. and co-authors. 2014. Stable oxygen isotope differences between the areas to the north and south of Qinling Mountains in China reveal different moisture sources. Int. J. Climatol. 34, 1760–1772. doi:10.1002/joc.3799
  • Yu, W., Yao, T., Tian, L., Ma, Y., Ichiyanagi, K. and co-authors. 2008. Relationships between  δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau. Atmos. Res. 87, 158–169. doi:10.1016/j.atmosres.2007.08.004
  • Yu, W., Yao, T., Tian, L., Ma, Y., Wen, R. and co-authors. 2015. Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes. Clim. Dyn. 47, 159–172. doi:10.1007/s00382-015-2829-1