1,716
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of methane sources in Lutjewad, The Netherlands, using quasi-continuous isotopic composition measurements

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 1-20 | Received 20 Apr 2020, Accepted 09 Sep 2020, Published online: 03 Nov 2020

References

  • Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and co-authors. 2011. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon. Weather Rev. 139, 3887–3905. doi:10.1175/MWR-D-10-05013.1
  • Beck, V., Chen, H., Gerbig, C., Bergamaschi, P., Bruhwiler, L. and co-authors. 2012. Methane airborne measurements and comparison to global models during BARCA: methane in the Amazon during BARCA. J. Geophys. Res. 117, 15310. doi:10.1029/2011JD017345
  • Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G. and co-authors. 2009. Inverse modeling of global and regional CH 4 emissions using SCIAMACHY satellite retrievals. J. Geophys. Res. 114, 301.
  • Bergamaschi, P., Lubina, C., Königstedt, R., Fischer, H., Veltkamp, A. C. and co-authors. 1998. Stable isotopic signatures (13C,D) of methane from European landfill sites. J. Geophys. Res. 103, 8251–8265. doi:10.1029/98JD00105
  • Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A. and co-authors. 2018. Inverse modelling of European CH 4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmos. Chem. Phys. 18, 901–920. doi:10.5194/acp-18-901-2018
  • Bilek, R. S., Tyler, S. C., Kurihara, M. and Yagi, K. 2001. Investigation of cattle methane production and emission over a 24-hour period using measurements of 13 C and D of emitted CH4 and rumen water. J. Geophys. Res. 106, 15405–15413. doi:10.1029/2001JD900177
  • Borsdorff, T., Brugh, J., Aan de, Pandey, S., Hasekamp, O., Aben, I. and co-authors. 2019. Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument. Atmos. Chem. Phys. 19, 3579–3588. doi:10.5194/acp-19-3579-2019
  • Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A. and co-authors. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443. doi:10.1038/nature05132
  • Bréas, O., Guillou, C., Reniero, F. and Wada, E. 2001. The global methane cycle: isotopes and mixing ratios, sources and sinks. Isotopes Environ. Health Stud. 37, 257–379. doi:10.1080/10256010108033302
  • Cain, M., Warwick, N. J., Fisher, R. E., Lowry, D., Lanoisellé, M. and co-authors. 2017. A cautionary tale: a study of a methane enhancement over the North Sea. J. Geophys. Res. Atmos. 122, 7630–7645. doi:10.1002/2017JD026626
  • Chanton, J. P., Rutkowski, C. M., Schwartz, C. C., Ward, D. E. and Boring, L. 2000. Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning. J. Geophys. Res. 105, 1867–1877. doi:10.1029/1999JD900909
  • Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W. and co-authors. 2010. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH 4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 3, 375–386. doi:10.5194/amt-3-375-2010
  • Dlugockenky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J. and Thoning, K. W. 2019. Atmospheric methane dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1983-2018, Version: 2019-07. Online at: https://www.esrl.noaa.gov/gmd/dv/data/index.php?category=Greenhouse
  • Dlugokencky, E. J., Nisbet, E. G., Fisher, R. and Lowry, D. 2011. Global atmospheric methane: budget, changes and dangers. Philos. Trans. A Math. Phys. Eng. Sci. 369, 2058–2072.
  • EEA (European Environment Agency). 2000. EMEP/CORINAIR atmospheric emission inventory guidebook - Second edition 1999. Output from Annual Management Plan. Online at: https://www.eea.europa.eu/publications/EMEPCORINAIR
  • European Union. 1995. Eurostat. European Commission website. Online at: https://ec.europa.eu/eurostat/statistical-atlas/gis/viewer/?
  • Eyer, S., Tuzson, B., Popa, M. E., van der Veen, C., Röckmann, T. and co-authors. 2016. Real-time analysis of 13 C- and D-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results. Atmos. Meas. Tech. 9, 263–280. doi:10.5194/amt-9-263-2016
  • Fortems-Cheiney, A., Pison, I., Dufour, G., Broquet, G., Berchet, A. and co-authors. 2019. Variational regional inverse modeling of reactive species emissions with PYVAR-CHIMERE. Preprint. Atmos. Sci. Online at: https://www.geosci-model-dev-discuss.net/gmd-2019-186/
  • Galand, P. E., Yrjälä, K. and Conrad, R. 2010. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 7, 3893–3900. doi:10.5194/bg-7-3893-2010
  • Games, L. M. and Hayes, J. M. 1976. On the mechanisms of CO2 and CH 4 production in natural anaerobic environments. Environ. Biogeochem. 1, 51–73.
  • Happell, J. D., Chanton, J. P. and Showers, W. J. 1995. Methane transfer across the water-air interface in stagnant wooded swamps of Florida: evaluation of mass-transfer coefficients and isotropic fractionation. Limnol. Oceanogr. 40, 290–298. doi:10.4319/lo.1995.40.2.0290
  • Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W. and co-authors. 2016. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmos. Chem. Phys. 16, 3683–3710. doi:10.5194/acp-16-3683-2016
  • Hitchman, S.P., 1989. Stable isotope ratios in methane containing gasess in the United Kingdom. Technical Report WE/89/30. British Geological Survey.
  • Hitchman, S. P., 1989. Stable Isotope Ratios in Methane Containing Gasess in the United Kingdom. Technical Report WE/89/30. British Geological Survey.
  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F. and co-authors. 2006. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813. doi:10.1007/s00382-006-0158-0
  • Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J. and co-authors. 2014. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos. Chem. Phys. 14, 3991–4012. doi:10.5194/acp-14-3991-2014
  • Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Brugh, J. and co-authors. 2018. Toward global mapping of methane with TROPOMI: first results and intersatellite comparison to GOSAT. Geophys. Res. Lett. 45, 3682–3689. doi:10.1002/2018GL077259
  • IPCC 2013. Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (OCLC: 871571414). Cambridge University Press, Cambridge, UK.
  • Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K. and co-authors. 2016. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Chem. Phys. 16, 14371–14396. doi:10.5194/acp-16-14371-2016
  • Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E. and co-authors. 2019. EDGAR v4.3.2 global atlas of the three major greenhousegas emissions for the period 1970-2012. Earth Syst. Sci. Data 11.3, 959–1002. doi:10.5194/essd-11-959-2019
  • Keeling, C. D. 1961. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta. 24, 277–298. doi:10.1016/0016-7037(61)90023-0
  • Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G. and co-authors. 2013. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823. doi:10.1038/ngeo1955
  • Klevenhusen, F., Bernasconi, S. M., Kreuzer, M. and Soliva, C. R. 2010. Experimental validation of the Intergovernmental Panel on Climate Change default values for ruminant-derived methane and its carbon-isotope signature. Anim. Prod. Sci. 50, 159. doi:10.1071/AN09112
  • Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., Gon, H. A. C. and Denier van der, 2014. TNO-MACC_ii emission inventory; a multi-year (2003-2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys 14, 10963–10976. doi:10.5194/acp-14-10963-2014
  • Levin, I., Bergamaschi, P., Dörr, H. and Trapp, D. 1993. Stable isotopic signature of methane from major sources in Germany. Chemosphere 26, 161–177. doi:10.1016/0045-6535(93)90419-6
  • Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M. and co-authors. 1999. Verification of German methane emission inventories and their recent changes based on atmospheric observations. J. Geophys. Res. 104, 3447–3456. doi:10.1029/1998JD100064
  • Lowry, D., Holmes, C. W., Rata, N. D., O'Brien, P. and Nisbet, E. G. 2001. London methane emissions: use of diurnal changes in concentration and d13 C to identify urban sources and verify inventories. J. Geophys. Res. 106, 7427–7448. doi:10.1029/2000JD900601
  • Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F. and co-authors. 2017. CHIMERE-2017: from urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 10, 2397–2423. doi:10.5194/gmd-10-2397-2017
  • Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J. and co-authors. 2015. A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geosci. Model Dev. 8, 2777–2813. doi:10.5194/gmd-8-2777-2015
  • Martens, C. S., Kelley, C. A., Chanton, J. P. and Showers, W. J. 1992. Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim delta, western Alaska. J. Geophys. Res. 97, 16689. doi:10.1029/91JD02885
  • Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N. and co-authors. 2013. CHIMERE 2013: a model for regional atmospheric composition modelling. Geosci. Model Dev. 6, 981–1028. doi:10.5194/gmd-6-981-2013
  • Ministerie van Economische Zaken, TNO. 2018. Overview of all boreholes. Online at: https://www.nlog.nl/en/map-boreholes
  • Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D. and co-authors. 2013. Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations: INVERSE MODELING OF SATELLITE RETRIEVED X CH4. J. Geophys. Res. Atmos. 118, 11,807–11,823. doi:10.1002/2013JD019760
  • Monteil, G., Houweling, S., Dlugockenky, E. J., Maenhout, G., Vaughn, B. H. and co-authors. 2011. Interpreting methane variations in the past two decades using measurements of CH 4 mixing ratio and isotopic composition. Atmos. Chem. Phys. 11, 9141–9153. doi:10.5194/acp-11-9141-2011
  • Nakagawa, F., Tsunogai, U., Komatsu, D. D., Yamada, K., Yoshida, N. and co-authors. 2005. Automobile exhaust as a source of 13 C- and D-enriched atmospheric methane in urban areas. Org. Geochem. 36, 727–738. doi:10.1016/j.orggeochem.2005.01.003
  • Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D. and co-authors. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris agreement. Global Biogeochem. Cycles 33, 318–342. doi:10.1029/2018GB006009
  • OSPAR Commission. 2015. 2015 Update of the Inventory of Oil and Gas Offshore Installations in the OSPAR Maritime Area. OSPAR Commission, Offshore Industry Series. London, UK.
  • Pandey, S., Houweling, S., Krol, M., Aben, I., Monteil, G. and co-authors. 2017. Enhanced methane emissions from tropical wetlands during the 2011 La Niña. Sci. Rep. 7, 45759. doi:10.1038/srep45759
  • Pandey, S., Houweling, S., Krol, M., Aben, I., Nechita–Banda, N. and co-authors. 2019. Influence of atmospheric transport on estimates of variability in the global methane burden. Geophys. Res. Lett. 46, 2302–2311. doi:10.1029/2018GL081092
  • Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R. and co-authors. 2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research: application of Keeling plots. Global Biogeochem. Cycles 17, 1022. doi:10.1029/2001GB001850.
  • Pisso, I., Sollum, E., Grythe, H., Kristiansen, N., Cassiani, M. and co-authors. 2019. The Lagrangian particle dispersion model FLEXPART version 10.3. Geosci. Model Dev. Discuss. 1–67. Retrieved from https://www.geosci-model-dev-discuss.net/gmd-2018-333/
  • Prinn, R., Weiss, R., Krummel, P., O’Doherty, S. and Muhle, J. 2008. The ALE/GAGE/AGAGE Network (DB1001). Environmental System Science Data Infrastructure for a Virtual Ecosystem; Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN.
  • Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C. and co-authors. 2013. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos. Meas. Tech. 6, 837–860. doi:10.5194/amt-6-837-2013
  • Riddick, S. N., Mauzerall, D. L., Celia, M., Harris, N. R. P., Allen, G. and co-authors. 2019. Measuring methane emissions from oil and gas platforms in the North Sea. Atmos. Chem. Phys. Discuss. 19, 9787–9796. doi:10.5194/acp-2019-90
  • Rigby, M., Manning, A. J. and Prinn, R. G. 2012. The value of high-frequency high-precision methane isotopologue measurements for source and sink estimation: methane isotopologues in inversions. J. Geophys. Res. 117, D12312, 1–14. doi:10.1029/2011JD017384
  • Ringeval, B., Friedlingstein, P., Koven, C., Ciais, P., de Noblet-Ducoudré, N. and co-authors. 2011. Climate-CH 4 feedback from wetlands and its interaction with the climate-CO2 feedback. Biogeosciences 8, 2137–2157. doi:10.5194/bg-8-2137-2011
  • Röckmann, T., Eyer, S., Veen, C., van der, Popa, M. E., Tuzson, B. and co-authors. 2016. In situ observations of the isotopic composition of methane at the Cabauw tall tower site. Atmos. Chem. Phys. 16, 10469–10487. doi:10.5194/acp-16-10469-2016
  • Santoni, G. W., Lee, B. H., Goodrich, J. P., Varner, R. K., Crill, P. M. and co-authors. 2012. Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer: methane isofluxes at a New Hampshire fen. J. Geophys. Res. 117, 1–15. Retrieved from http://doi.wiley.com/10.1029/2011JD016960
  • Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P. and co-authors. 2016. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751. doi:10.5194/essd-8-697-2016
  • Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G. W. and co-authors. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄. Science 352, 80–84. doi:10.1126/science.aad2705
  • Seibert, P. and Frank, A. 2004. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 4, 51–63. doi:10.5194/acp-4-51-2004
  • Smith, L. K., Lewis, W. M., Jr., Chanton, J. P., Cronin, G. and Hamilton, S. K. 2000. Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51, 113–140. doi:10.1023/A:1006443429909
  • Sperlich, P., Uitslag, N. A. M., Richter, J. M., Rothe, M., Geilmann, H. and co-authors. 2016. Development and evaluation of a suite of isotope reference gases for methane in air. Atmos. Meas. Tech. 9, 3717–3737. doi:10.5194/amt-9-3717-2016
  • Stortplaatsen in Nederland. 2019. Online at: https://www.bodemplus.nl/onderwerpen/bodem-ondergrond/verwerking-grond/stortplaatsen/stortplaatsen/
  • Sugimoto, A. and Fujita, N. 2006. Hydrogen concentration and stable isotopic composition of methane in bubble gas observed in a natural wetland. Biogeochemistry 81, 33–44. doi:10.1007/s10533-006-9028-4
  • Szénási, B. 2019. Forward modelling simulations of CH4 and isotopologues (Deliverable 3.3). Online at: https://h2020-memo2.eu/wp-content/uploads/sites/198/2019/09/Deliverable_D3_3_final_version-SW.pdf
  • Tarasova, O., Brenninkmeijer, C., Assonov, S., Elansky, N., Rockmann, T. and co-authors. 2006. Atmospheric CH4 along the Trans-Siberian railroad (TROICA) and river Ob: source identification using stable isotope analysis. Atmos. Environ. 40, 5617–5628. doi:10.1016/j.atmosenv.2006.04.065
  • Thanwerdas, J., Saunois, M., Berchet, A., Pison, I., Hauglustaine, D. and co-authors. 2019. Impact of atomic chlorine on the modelling of total methane and its 13C:12C isotopic ratio at global scale. Atmos. Chem. Phys. Discuss. In review. doi:10.5194/acp-2019-925
  • Thielemann, T., Cramer, B. and Schippers, A. 2004. Coalbed methane in the Ruhr Basin, Germany: a renewable energy resource? Org. Geochem. 35, 1537–1549. doi:10.1016/S0146-6380(04)00120-2
  • Townsend-Small, A., Botner, E. C., Jimenez, K. L., Schroeder, J. R., Blake, N. J. and co-authors. 2016. Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: a case study from the Colorado Front Range: hydrogen isotopes in the Front Range. Geophys. Res. Lett. 43, 11,462–11,471. doi:10.1002/2016GL071438
  • Turner, A. J., Frankenberg, C. and Kort, E. A. 2019. Interpreting contemporary trends in atmospheric methane. Proc Natl Acad Sci USA 116, 2805–2813. doi:10.1073/pnas.1814297116
  • Tyler, S. C., Bilek, R. S., Sass, R. L. and Fisher, F. M. 1997. Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, d13 C, and dD of CH4. Global Biogeochem. Cycles 11, 323–348. doi:10.1029/97GB01624
  • Tyler, S. C., Blake, D. R. and Rowland, F. S. 1987. 13C/12 C ratio in methane from the flooded Amazon forest. J. Geophys. Res. 92, 1044. doi:10.1029/JD092iD01p01044
  • Umezawa, T., Brenninkmeijer, C. A. M., Röckmann, T., Veen, C., van der, Tyler, S. C. and co-authors. 2018. Interlaboratory comparison of 13 C and D measurements of atmospheric CH4 for combined use of data sets from different laboratories. Atmos. Meas. Tech. 11, 1207–1231. doi:10.5194/amt-11-1207-2018
  • Uzaki, M., Mizutani, H. and Wada, E. 1991. Carbon isotope composition of CH4 from rice paddies in Japan. Biogeochemistry 13, 159–175.
  • Vlek, C. 2018. Induced earthquakes from long-term gas extraction in Groningen, the Netherlands: statistical analysis and prognosis for acceptable-risk regulation: induced earthquakes from long-term gas extraction in Groningen. Risk Anal. 38, 1455–1473. doi:10.1111/risa.12967
  • Wageningen University & Research. 2015. Landelijk Grondgebruik Nederland - LGN7_BRP2015. Online at: https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksinstituten/Environmental-Research/Faciliteiten-Producten/Kaarten-en-GIS-bestanden/Landelijk-Grondgebruik-Nederland/lgn_viewer.htm
  • Werner, R. A. and Brand, W. A. 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519. doi:10.1002/rcm.258
  • Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M. and co-authors. 2017. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 8, 2227. doi:10.1038/s41467-017-02246-0
  • World Meteorological Orgnaization (WMO). 2019. WMO greenhouse gas bulletin (GHG Bulletin) - No. 15: The state of greenhouse gases in the atmosphere based on global observations through 2018. Tech. Rep. Global Atmospheric Watch. Online at: https://library.wmo.int/doc_num.php?explnum_id=10100
  • Yacovitch, T. I., Neininger, B., Herndon, S. C., Gon, H. D., Van der, Jonkers, S. and co-authors. 2018. Methane emissions in the Netherlands: the Groningen field. Elem. Sci. Anth. 6, 57. doi:10.1525/elementa.308
  • Zazzeri, G., Lowry, D., Fisher, R., France, J., Lanoisellé, M. and co-authors. 2015. Plume mapping and isotopic characterisation of anthropogenic methane sources. Atmos. Environ. 110, 151–162. doi:10.1016/j.atmosenv.2015.03.029
  • Zazzeri, G., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé, M. and co-authors. 2016. Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration. Atmos. Chem. Phys. 16, 13669–13680. doi:10.5194/acp-16-13669-2016
  • Zazzeri, G., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé, M. and co-authors. 2017. Evaluating methane inventories by isotopic analysis in the London region. Sci. Rep. 7, 4854. doi:10.1038/s41598-017-04802-6