2,391
Views
2
CrossRef citations to date
0
Altmetric
Articles

Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia

, , , , ORCID Icon, ORCID Icon, , & ORCID Icon show all

References

  • Fiegl, M., Epidemiology, pathogenesis, and etiology of acute leukemia; 2016. p. 3–13.
  • Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol. 2015;144(3):393–410.
  • Zhang X, et al. B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy. Oncotarget. 2017;8(39):66728–66741.
  • Siegel DA, et al. Rates and Trends of pediatric acute lymphoblastic leukemia – United States, 2001-2014. MMWR Morb Mortal Wkly Rep. 2017;66(36):950–954.
  • Yilmaz M, Kantarjian H, Jabbour E. Treatment of acute lymphoblastic leukemia in older adults: now and the future. Clin Adv Hematol Oncol. 2017;15(4):266–274.
  • Perez-Saldivar ML, et al. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology. BMC Cancer. 2011;11:355.
  • Bernaldez-Rios R, et al. The age incidence of childhood B-cell precursor acute lymphoblastic leukemia in Mexico City. J Pediatr Hematol Oncol. 2008;30(3):199–203.
  • Tijchon E, et al. B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia. 2013;27(3):541–552.
  • Garza-Veloz I, et al. Identification of differentially expressed genes associated with prognosis of B acute lymphoblastic leukemia. Dis Markers. 2015;2015:828145.
  • Quezada H, et al. Omics-based biomarkers: current status and potential use in the clinic. Bol Med Hosp Infant Mex. 2017;74(3):219–226.
  • Foss EJ, et al. Proteomic classification of acute leukemias by Alignment-based quantitation of LC–MS/MS data sets. J Proteome Res. 2012;11(10):5005–5010.
  • Chandramouli K, Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics. 2009;2009:1–22.
  • Srinivas PR, et al. Proteomics for cancer biomarker discovery. Clin Chem. 2002;48(8):1160–1169.
  • Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. Sci World J. 2014;2014:260348.
  • Lopez Villar E, et al. Proteomics-based discovery of biomarkers for paediatric acute lymphoblastic leukaemia: challenges and opportunities. J Cell Mol Med. 2014;18(7):1239–1246.
  • Malm J, et al. Developments in biobanking workflow standardization providing sample integrity and stability. J Proteomics. 2013;95:38–45.
  • Yip C, Garcia A. Exploring the potential of platelet proteomics in children. Proteomics Clin Appl. 2014;8(11–12):807–812.
  • Gonzalez-Gonzalez M, et al. Genomics and proteomics approaches for biomarker discovery in sporadic colorectal cancer with metastasis. Cancer Genomics Proteomics. 2013;10(1):19–25.
  • Adan A, et al. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–176.
  • Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014073.
  • van Dongen JJ, et al. Euroflow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–1975.
  • Denys B, et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2013;27(3):635–641.
  • Kalina T, et al. Euroflow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.
  • Gaipa G, et al. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom. 2013;84(6):359–369.
  • Coustan-Smith E, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550–554.
  • Basso G, et al. New methodologic approaches for immunophenotyping acute leukemias. Haematologica. 2001;86(7):675–692.
  • van Zelm MC, et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol. 2005;175(9):5912–5922.
  • Campo E, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–5032.
  • Jiang Z, et al. CD34 and CD38 are prognostic biomarkers for acute B lymphoblastic leukemia. Biomark Res. 2016;4:23.
  • Coustan-Smith E, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood. 2006;108(1):97–102.
  • Bene MC, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet work Package 10. Leukemia. 2011;25(4):567–574.
  • Sedek L, et al. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts? Cytometry B Clin Cytom. 2014;86(5):329–339.
  • Seegmiller AC, et al. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009;132(6):940–949.
  • Huang Y-J, et al. Concordance of two approaches in monitoring of minimal residual disease in B-precursor acute lymphoblastic leukemia: fusion transcripts and leukemia-associated immunophenotypes. J Formos Med Assoc. 2017;116(10):774–781.
  • Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. ASH Educ Program Book. 2014;2014(1):244–249.
  • Parikh S, Uparkar U. Assessment of minimal residual disease in childhood acute lymphoblastic leukemia. J Appl Hematol. 2016;7(2):47–53.
  • Gaipa G, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia. 2004;19:49.
  • Hasan AB, et al. Folia Med (Plovdiv). 2016;58(1):28–35.
  • Theunissen P, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129(3):347–357.
  • Karawajew L, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica. 2015;100(7):935–944.
  • Abaza HM, et al. Neuropilin-1/CD304 expression by flow cytometry in pediatric precursor B-acute lymphoblastic leukemia: A minimal residual disease and potential prognostic Marker. J Pediatr Hematol Oncol. 2018;40(3):200–207.
  • Bhattacharjee M, et al. Synovial fluid proteome in rheumatoid arthritis. Clin Proteomics. 2016;13:12.
  • Malchow S, et al. Quantification of cardiovascular disease biomarkers in human platelets by targeted mass spectrometry. Proteomes. 2017;5(4).
  • Guerrera IC, Kleiner O. Application of mass spectrometry in proteomics. Biosci Rep. 2005;25(1–2):71–93.
  • Fenn JB, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–2301.
  • Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology. Blood. 2004;103(10):3624.
  • Yates JR. 3rd mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct. 2004;33:297–316.
  • Lundstrom SL, et al. Spotlight proteomics: uncovering the hidden blood proteome improves diagnostic power of proteomics. Sci Rep. 2017;7:41929.
  • Churchman ML, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343–356.
  • Saha S, et al. 2DGE and DIGE based proteomic study of malignant B-cells in B-cell acute lymphoblastic leukemia. EuPA Open Proteom. 2014;3:13–26.
  • Cavalcante Mde S, et al. A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic leukemia. Biomark Res. 2016;4:1.
  • Mirkowska P, et al. Leukemia surfaceome analysis reveals new disease-associated features. Blood. 2013;121(25):e149–e159.
  • Xu G, et al. Label-free quantitative proteomics reveals differentially expressed proteins in high risk childhood acute lymphoblastic leukemia. J Proteomics. 2017;150:1–8.
  • Zhu YP, et al. Preparation of Whole bone marrow for mass cytometry analysis of Neutrophil-lineage cells. J Vis Exp. 2019;148:10.3791/59617.
  • Wierz M, et al. High-dimensional mass cytometry analysis revealed microenvironment complexity in chronic lymphocytic leukemia. Oncoimmunology. 2018;7(8):e1465167.
  • Samusik N, et al. Automated mapping of phenotype space with single-cell data. Nat Methods. 2016;13(6):493–496.
  • Bendall SC, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–696.
  • Behbehani GK. Applications of mass cytometry in clinical Medicine: The Promise and Perils of clinical CyTOF. Clin Lab Med. 2017;37(4):945–964.
  • Behbehani GK, et al. Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy. Cancer Discov. 2015;5(9):988–1003.
  • Ferrell Jr. PB, et al. High-dimensional analysis of acute myeloid leukemia reveals phenotypic changes in persistent cells during induction therapy. PLoS One. 2016;11(4):e0153207.
  • Fisher DAC, et al. Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia. Leukemia. 2017;31(9):1962–1974.
  • Levine JH, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell. 2015;162(1):184–197.
  • Lamble AJ, et al. Integrated functional and mass spectrometry-based flow cytometric phenotyping to describe the immune microenvironment in acute myeloid leukemia. J Immunol Methods. 2018;453:44–52.
  • Mattoon D, et al. Biomarker discovery using protein microarray technology platforms: antibody-antigen complex profiling. Expert Rev Proteomics. 2005;2(6):879–889.
  • Huang Y, Zhu H. Protein array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinformatics. 2017;15(2):73–81.
  • Sutandy FX, et al. Overview of protein microarrays. Curr Protoc Protein Sci. 2013: 1–21. Chapter 27: p. Unit 27 1..
  • Stoevesandt O, Taussig MJ. Affinity proteomics: the role of specific binding reagents in human proteome analysis. Expert Rev Proteomics. 2012;9(4):401–414.
  • Hartsink-Segers SA, et al. Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target. Leukemia. 2013;27(3):560–568.
  • Irwin ME, et al. Small molecule ErbB inhibitors decrease proliferative signaling and promote apoptosis in Philadelphia chromosome–positive acute lymphoblastic leukemia. PLoS One. 2013;8(8):e70608.
  • Alatrash G. Targeting cathepsin G in myeloid leukemia. Oncoimmunology. 2013;2(4):e23442.
  • Khan M, et al. Cathepsin G is expressed By B cell acute lymphoblastic leukemia and is an effective immunotherapeutic target. Blood. 2017;130(Suppl 1):1438.
  • Heltemes-Harris LM, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J Exp Med. 2011;208(6):1135–1149.
  • Schinnerl D, et al. The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia. Blood. 2015;125(8):1282–1291.
  • van der Veer A, et al. Interference with pre-B-cell receptor signaling offers a therapeutic option for TCF3-rearranged childhood acute lymphoblastic leukemia. Blood Cancer J. 2014;4:e181.
  • Shojaee S, et al. Erk negative feedback control enables pre-B cell transformation and represents a therapeutic target in acute lymphoblastic leukemia. Cancer Cell. 2015;28(1):114–128.
  • Wang TX, et al. Reversal of multidrug resistance by 5,5'-dimethoxylariciresinol-4-O-beta-D-glucoside in doxorubicin-resistant human leukemia K562/DOX. Indian J Pharmacol. 2013;45(6):597–602.
  • Stam RW, et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2010;115(5):1018–1025.
  • Huang YJ, et al. Reverse-phase protein array analysis to identify biomarker proteins in human pancreatic cancer. Dig Dis Sci. 2014;59(5):968–975.
  • Petit C, et al. Hypoxia promotes chemoresistance in acute lymphoblastic leukemia cell lines by modulating death signaling pathways. BMC Cancer. 2016;16:746.
  • Yang Y, et al. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 2013;333(1). .
  • Ghazavi F, et al. RPPA-based protein profiling reveals enhanced PI3 K/AKT/mTOR signaling in ETV6/RUNX1-positive acute lymphoblastic leukemia patients with low CD200 expression. Blood. 2016;128(22):890.
  • Guzmán-Ortiz AL, et al. Proteomic changes in a childhood acute lymphoblastic leukemia cell line during the adaptation to vincristine. Boletín Médico del Hospital Infantil de México. 2017;74(3):181–192.
  • Kawahara R, et al. Integrative analysis to select cancer candidate biomarkers to targeted validation. Oncotarget. 2015;6(41):43635–43652.
  • Quezada H, et al. Omics-based biomarkers: current status and potential use in the clinic. Boletín Médico del Hospital Infantil de México. 2017;74(3):219–226.
  • Tembhare Prashant R, et al. Evaluation of new markers for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia: CD73 and CD86 are the most relevant new markers to increase the efficacy of MRD 2016; 00B: 000–000. Cytometry Part B: Clin Cytometry. 2016;94(1):100–111.
  • Sherif L, et al. Cluster of differentiation 97 as a biomarker for the detection of minimal residual disease in common acute lymphoblastic leukemia. Egypt J Haematol. 2017;42(3):81–87.
  • Feist P, Hummon AB. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci. 2015;16(2):3537–3563.
  • Arques S. Human serum albumin in cardiovascular diseases. Eur J Intern Med. 2018;52:8–12.
  • Bene MC, Faure GC. CD10 in acute leukemias. GEIL (Groupe d'Etude Immunologique des Leucemies). Haematologica. 1997;82(2):205–210.
  • Al-Mawali A, et al. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am J Clin Pathol. 2008;129(6):934–945.
  • Bachir F, et al. Characterization of acute lymphoblastic leukemia subtypes in Moroccan children. Int J Pediatr. 2009;2009:674801.
  • Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36.
  • Poe JC, et al. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol. 2004;5(10):1078–1087.
  • Luger D, et al. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects. PLoS One. 2013;8(10):e76115.
  • Martin-Martin L, et al. Immunophenotypical, morphologic, and functional characterization of maturation-associated plasmacytoid dendritic cell subsets in normal adult human bone marrow. Transfusion. 2009;49(8):1692–1708.
  • Vardiman JW, et al. The 2008 revision of the World Health organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–951.
  • Kong Y, et al. CD34 + CD38 + CD19+ as well as CD34 + CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia. 2008;22(6):1207–1213.
  • Djokic M, et al. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica. 2009;94(7):1016–1019.
  • Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol. 2009;9(3):195–205.
  • Forero-Castro M, et al. Mutations in TP53 and JAK2 are independent prognostic biomarkers in B-cell precursor acute lymphoblastic leukaemia. Br J Cancer. 2017;117(2):256–265.
  • Gostissa M, et al. Conditional inactivation of p53 in mature B cells promotes generation of nongerminal center-derived B-cell lymphomas. Proc Natl Acad Sci USA. 2013;110(8):2934–2939.
  • Steeghs EMP, et al. JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia. Oncotarget. 2017;8(52):89923–89938.
  • Jerchel IS, et al. RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia. 2018;32(4):931–940.
  • Antonyak MA, Cerione RA. Ras and the FAK paradox. Mol Cell. 2009;35(2):141–142.
  • Wang X, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature. 2013;499:306.
  • Chaiwatanasirikul KA, Sala A. The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60. Cell Death Dis. 2011;2:e219.
  • Wang S-J, et al. Overexpression of cysteine and glycine-rich protein 2 in bone marrow as a novel biomarker in adult B-cell acute lymphoblastic leukemia. Blood. 2016;128(22):5271–5271.
  • Ebrahimi-Rad M, et al. Adenosine deaminase 1 as a biomarker for diagnosis and monitoring of patients with acute lymphoblastic leukemia. J Med Biochem. 2018;37(2):128–133.
  • Asai D, et al. IKZF1 deletion is associated with a poor outcome in pediatric B-cell precursor acute lymphoblastic leukemia in Japan. Cancer Med. 2013;2(3):412–419.
  • Yamashita Y, et al. IKZF1 and CRLF2 gene alterations correlate with poor prognosis in Japanese BCR-ABL1-negative high-risk B-cell precursor acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60(10):1587–1592.
  • Milani M, et al. Plasma Hsp90 level as a marker of early acute lymphoblastic leukemia engraftment and progression in mice. PLoS One. 2015;10(6):e0129298.
  • Zuehlke A, Johnson JL. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers. 2010;93(3):211–217.
  • Xu Y, et al. Overexpression of MALT1-A20-NF-kappaB in adult B-cell acute lymphoblastic leukemia. Cancer Cell Int. 2015;15:73.
  • Obro NF, et al. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods. Haematologica. 2012;97(1):137–141.
  • Wang W, et al. The application of CD73 in minimal residual disease monitoring using flow cytometry in B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2016;57(5):1174–1181.
  • Shi L, et al. Discovery and identification of potential biomarkers of pediatric acute lymphoblastic leukemia. Proteome Sci. 2009;7:7.
  • Good Z, et al. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018;24(4):474–483.
  • Sarno J, et al. SRC/ABL inhibition disrupts CRLF2-driven signaling to induce cell death in B-cell acute lymphoblastic leukemia. Oncotarget. 2018;9(33):22872–22885.
  • Bendall SC, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157(3):714–725.