7,459
Views
27
CrossRef citations to date
0
Altmetric
Articles

Inflammation in deep vein thrombosis: a therapeutic target?

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and Stroke Statistics-2017 Update: a report from the American Heart Association. Circulation. 2017;135(10):e146–e603.
  • Kahn SR, Comerota AJ, Cushman M, et al. The postthrombotic syndrome: evidence-based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2014;130(18):1636–1661.
  • Chitsike RS, Rodger MA, Kovacs MJ, et al. Risk of post-thrombotic syndrome after subtherapeutic warfarin anticoagulation for a first unprovoked deep vein thrombosis: results from the REVERSE study. J. Thromb. Haemost. JTH. 2012;10(10):2039–2044.
  • Galanaud JP, Holcroft CA, Rodger MA, et al. Predictors of post-thrombotic syndrome in a population with a first deep vein thrombosis and no primary venous insufficiency. J. Thromb. Haemost. JTH. 2013;11(3):474–480.
  • Stain M, Schönauer V, Minar E, et al. The post-thrombotic syndrome: risk factors and impact on the course of thrombotic disease. J. Thromb. Haemost. JTH. 2005;3(12):2671–2676.
  • Barritt DW, Jordan SC. Anticoagulant drugs in the treatment of pulmonary embolism. A controlled trial. Lancet Lond. Engl. 1960;275(7138):1309–1312.
  • Hillis CM, Crowther MA. Acute phase treatment of VTE: anticoagulation, including non-vitamin K antagonist oral anticoagulants. Thromb. Haemost. 2015;113(6):1193–1202.
  • ten Cate-Hoek AJ, Henke PK, Wakefield TW. The post thrombotic syndrome: Ignore it and it will come back to bite you. Blood Rev. 2016;30(2):131–137.
  • Hassanian SM, Avan A, Ardeshirylajimi A. Inorganic polyphosphate: a key modulator of inflammation. J. Thromb. Haemost. JTH. 2017;15(2):213–218.
  • Brinkmann V. Neutrophil extracellular traps in the second decade. J. Innate Immun. 2018;10(5–6):414–421.
  • Pober JS. Activation and injury of endothelial cells by cytokines. Pathol. Biol. (Paris). 1998;46(3):159–163.
  • von Brühl M-L, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012;209(4):819–835.
  • Wang Y, Gao H, Shi C, et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat. Commun. 2017;8:15559.
  • Saha P, Humphries J, Modarai B, et al. Leukocytes and the natural history of deep vein thrombosis: current concepts and future directions. Arterioscler. Thromb. Vasc. Biol. 2011;31(3):506–512.
  • Wakefield TW, Henke PK. The role of inflammation in early and late venous thrombosis: are there clinical implications? Semin. Vasc. Surg. 2005;18(3):118–129.
  • Myers D, Farris D, Hawley A, et al. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J. Surg. Res. 2002;108(2):212–221.
  • Myers DD, Schaub R, Wrobleski SK, et al. P-selectin antagonism causes dose-dependent venous thrombosis inhibition. Thromb. Haemost. 2001;85(3):423–429.
  • Bedard PW, Clerin V, Sushkova N, et al. Characterization of the novel P-selectin inhibitor PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8,9,10-tetrahydrobenzo[h] quinoline-4-carboxylic acid] in vitro and in rodent models of vascular inflammation and thrombosis. J. Pharmacol. Exp. Ther. 2008;324(2):497–506.
  • Panicker SR, Mehta-D’souza P, Zhang N, et al. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood. 2017;130(2):181–191.
  • Wakefield TW, Greenfield LJ, Rolfe MW, et al. Inflammatory and procoagulant mediator interactions in an experimental baboon model of venous thrombosis. Thromb. Haemost. 1993;69(2):164–172.
  • Lefer AM, Campbell B, Scalia R, et al. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation. 1998;98(13):1322–1328.
  • Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359(6398):848–851.
  • Hrachovinová I, Cambien B, Hafezi-Moghadam A, et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat. Med. 2003;9(8):1020–1025.
  • Kremers BMM, Ten Cate H, Spronk HMH. Pleiotropic effects of the hemostatic system. J. Thromb. Haemost. JTH. 2018;16(8):1464–1473.
  • Martinod K, Demers M, Fuchs TA, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc. Natl. Acad. Sci. U. S. A. 2013;110(21):8674–8679.
  • Gupta AK, Hasler P, Holzgreve W, et al. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol. 2005;66(11):1146–1154.
  • Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007;13(4):463–469.
  • Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. U. S. A. 2010;107(36):15880–15885.
  • Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. JTH. 2012;10(1):136–144.
  • Savchenko AS, Martinod K, Seidman MA, et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J. Thromb. Haemost. JTH. 2014;12(6):860–870.
  • Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202–1206.
  • Lapponi MJ, Carestia A, Landoni VI, et al. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 2013;345(3):430–437.
  • Verhoef JJF, Barendrecht AD, Nickel KF, et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood. 2017;129(12):1707–1717.
  • Wijeyewickrema LC, Lameignere E, Hor L, et al. Polyphosphate is a novel cofactor for regulation of complement by a serpin, C1 inhibitor. Blood. 2016;128(13):1766–1776.
  • Dinarvand P, Hassanian SM, Qureshi SH, et al. Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor. Blood. 2014;123(6):935–945.
  • Bae J-S, Lee W, Rezaie AR. Polyphosphate elicits pro-inflammatory responses that are counteracted by activated protein C in both cellular and animal models. J. Thromb. Haemost. JTH. 2012;10(6):1145–1151.
  • Johnson BF, Manzo RA, Bergelin RO, et al. Relationship between changes in the deep venous system and the development of the postthrombotic syndrome after an acute episode of lower limb deep vein thrombosis: a one- to six-year follow-up. J. Vasc. Surg. 1995;21(2):307–313. discussion 313.
  • Yamaki T, Nozaki M. Patterns of venous insufficiency after an acute deep vein thrombosis. J. Am. Coll. Surg. 2005;201(2):231–238.
  • Raffetto JD, Khalil RA. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr. Vasc. Pharmacol. 2008;6(3):158–172.
  • Henke PK, Varga A, De S, et al. Deep vein thrombosis resolution is modulated by monocyte CXCR2-mediated activity in a mouse model. Arterioscler. Thromb. Vasc. Biol. 2004;24(6):1130–1137.
  • Lepidi S, Kenagy RD, Raines EW, et al. MMP9 production by human monocyte-derived macrophages is decreased on polymerized type I collagen. J. Vasc. Surg. 2001;34(6):1111–1118.
  • Nosaka M, Ishida Y, Kimura A, et al. Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J. Clin. Invest. 2011;121(7):2911–2920.
  • Nguyen KP, McGilvray KC, Puttlitz CM, et al. Matrix metalloproteinase 9 (MMP-9) regulates vein wall biomechanics in murine thrombus resolution. PloS One. 2015;10(9):e0139145.
  • Henke PK, Varma MR, Moaveni DK, et al. Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thromb. Haemost. 2007;98(5):1045–1055.
  • Deatrick KB, Obi A, Luke CE, et al. Matrix metalloproteinase-9 deletion is associated with decreased mid-term vein wall fibrosis in experimental stasis DVT. Thromb. Res. 2013;132(3):360–366.
  • Deatrick KB, Luke CE, Elfline MA, et al. The effect of matrix metalloproteinase 2 and matrix metalloproteinase 2/9 deletion in experimental post-thrombotic vein wall remodeling. J. Vasc. Surg. 2013;58(5):1375–1384.e2.
  • Dahi S, Lee JG, Lovett DH, et al. Differential transcriptional activation of matrix metalloproteinase-2 and membrane type-1 matrix metalloproteinase by experimental deep venous thrombosis and thrombin. J. Vasc. Surg. 2005;42(3):539–545.
  • Ono T, Bergan JJ, Schmid-Schönbein GW, et al. Monocyte infiltration into venous valves. J. Vasc. Surg. 1998;27(1):158–166.
  • Li SP, Goldman ND. Regulation of human C-reactive protein gene expression by two synergistic IL-6 responsive elements. Biochemistry (Mosc.). 1996;35(28):9060–9068.
  • Gremmel T, Ay C, Seidinger D, et al. Soluble p-selectin, D-dimer, and high-sensitivity C-reactive protein after acute deep vein thrombosis of the lower limb. J. Vasc. Surg. 2011;54(6 Suppl):48S–55S.
  • Mosevoll KA, Lindås R, Tvedt THA, et al. Altered plasma levels of cytokines, soluble adhesion molecules and matrix metalloproteases in venous thrombosis. Thromb. Res. 2015;136(1):30–39.
  • Vandy FC, Stabler C, Eliassen AM, et al. Soluble P-selectin for the diagnosis of lower extremity deep venous thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2013;1(2):117–125.
  • Rabinovich A, Cohen JM, Cushman M, et al. Inflammation markers and their trajectories after deep vein thrombosis in relation to risk of post-thrombotic syndrome. J. Thromb. Haemost. JTH. 2015;13(3):398–408.
  • Roumen-Klappe EM, den Heijer M, van Uum SHM, et al. Inflammatory response in the acute phase of deep vein thrombosis. J. Vasc. Surg. 2002;35(4):701–706.
  • Bombeli T, Jutzi M, De Conno E, et al. In patients with deep-vein thrombosis elevated levels of factor VIII correlate only with von Willebrand factor but not other endothelial cell-derived coagulation and fibrinolysis proteins. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2002;13(7):577–581.
  • Jezovnik MK, Poredos P. Factors influencing the recanalisation rate of deep venous thrombosis. Int. Angiol. J. Int. Union Angiol. 2012;31(2):169–175.
  • Roumen-Klappe EM, Janssen MCH, Van Rossum J, et al. Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: a prospective study. J. Thromb. Haemost. JTH. 2009;7(4):582–587.
  • Roberts LN, Patel RK, Goss DE, et al. Relationship between development of post-thrombotic syndrome and serial ultrasound, D-dimer, and factor VIII activity after a first deep venous thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2016;4(1):28–35.
  • Bouman AC, Smits JJM, Ten Cate H, et al. Markers of coagulation, fibrinolysis and inflammation in relation to post-thrombotic syndrome. J. Thromb. Haemost. JTH. 2012;10(8):1532–1538.
  • de Franciscis S, Gallelli L, Amato B, et al. Plasma MMP and TIMP evaluation in patients with deep venous thrombosis: could they have a predictive role in the development of post-thrombotic syndrome? Int. Wound J. 2016;13(6):1237–1245.
  • Shbaklo H, Holcroft CA, Kahn SR. Levels of inflammatory markers and the development of the post-thrombotic syndrome. Thromb. Haemost. 2009;101(3):505–512.
  • Deatrick KB, Elfline M, Baker N, et al. Postthrombotic vein wall remodeling: preliminary observations. J. Vasc. Surg. 2011;53(1):139–146.
  • Diaz JA, Fuchs TA, Jackson TO, et al. Plasma DNA is elevated in patients with deep vein thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2013;1(4):341–348.
  • van Montfoort ML, Stephan F, Lauw MN, et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler. Thromb. Vasc. Biol. 2013;33(1):147–151.
  • Thålin C, Daleskog M, Göransson SP, et al. Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma. Immunol. Res. 2017;65(3):706–712.
  • Mauracher L-M, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J. Thromb. Haemost. JTH. 2018;16(3):508–518.
  • Lee KH, Cavanaugh L, Leung H, et al. Quantification of NETs-associated markers by flow cytometry and serum assays in patients with thrombosis and sepsis. Int. J. Lab. Hematol. 2018;40(4):392–399.
  • Kahn SR, Kearon C, Julian JA, et al. Predictors of the post-thrombotic syndrome during long-term treatment of proximal deep vein thrombosis. J. Thromb. Haemost. JTH. 2005;3(4):718–723.
  • Schmidt M, Christiansen CF, Horváth-Puhó E, et al. Non-steroidal anti-inflammatory drug use and risk of venous thromboembolism. J. Thromb. Haemost. JTH. 2011;9(7):1326–1333.
  • Ungprasert P, Srivali N, Wijarnpreecha K, et al. Non-steroidal anti-inflammatory drugs and risk of venous thromboembolism: a systematic review and meta-analysis. Rheumatol. Oxf. Engl. 2015;54(4):736–742.
  • Satoh M, Takahashi Y, Tabuchi T, et al. Cellular and molecular mechanisms of statins: an update on pleiotropic effects. Clin. Sci. Lond. Engl. 1979. 2015;129(2):93–105.
  • Glynn RJ, Danielson E, Fonseca FAH, et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N. Engl. J. Med. 2009;360(18):1851–1861.
  • Rahimi K, Bhala N, Kamphuisen P, et al. Effect of statins on venous thromboembolic events: a meta-analysis of published and unpublished evidence from randomised controlled trials. PLoS Med. 2012;9(9):e1001310.
  • Kessinger CW, Kim JW, Henke PK, et al. Statins improve the resolution of established murine venous thrombosis: reductions in thrombus burden and vein wall scarring. PloS One. 2015;10(2):e0116621.
  • Feng Y, Lei B, Zhang F, et al. Anti-inflammatory effects of simvastatin during the resolution phase of experimentally formed venous thrombi. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2017;65(6):999–1007.
  • San Norberto EM, Gastambide MV, Taylor JH, et al. Effects of rosuvastatin as an adjuvant treatment for deep vein thrombosis. VASA Z. Gefasskrankheiten. 2016;45(2):133–140.
  • Meier TR, Myers DD, Wrobleski SK, et al. Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation. Thromb. Haemost. 2008;99(2):343–351.
  • Diaz JA, Wrobleski SK, Alvarado CM, et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 2015;35(4):829–837.
  • Ramacciotti E, Myers DD, Wrobleski SK, et al. P-selectin/ PSGL-1 inhibitors versus enoxaparin in the resolution of venous thrombosis: a meta-analysis. Thromb. Res. 2010;125(4):e138–e142.
  • Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb. Haemost. 2017;117(3):437–444.
  • Mastrolia SA, Mazor M, Holcberg G, et al. The physiologic anticoagulant and anti-inflammatory role of heparins and their utility in the prevention of pregnancy complications. Thromb. Haemost. 2015;113(6):1236–1246.
  • Lipowsky HH, Lescanic A. Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc. Res. 2017;112:72–78.
  • Hochart H, Jenkins PV, Smith OP, et al. Low-molecular weight and unfractionated heparins induce a downregulation of inflammation: decreased levels of proinflammatory cytokines and nuclear factor-kappaB in LPS-stimulated human monocytes. Br. J. Haematol. 2006;133(1):62–67.
  • Esmon CT. Targeting factor Xa and thrombin: impact on coagulation and beyond. Thromb. Haemost. 2014;111(4):625–633.
  • Lupu C, Poulsen E, Roquefeuil S, et al. Cellular effects of heparin on the production and release of tissue factor pathway inhibitor in human endothelial cells in culture. Arterioscler. Thromb. Vasc. Biol. 1999;19(9):2251–2262.
  • Downing LJ, Strieter RM, Kadell AM, et al. Low-dose low-molecular-weight heparin is anti-inflammatory during venous thrombosis. J. Vasc. Surg. 1998;28(5):848–854.
  • Gao Y, Li N, Fei R, et al. P-Selectin-mediated acute inflammation can be blocked by chemically modified heparin, RO-heparin. Mol Cells. 2005;19(3):350–355.
  • Rao NV, Argyle B, Xu X, et al. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am. J. Physiol. Cell Physiol. 2010;299(1):C97–C110.
  • Gonzales JN, Kim K, Zemskova MA, et al. Low anticoagulant heparin blocks thrombin-induced endothelial permeability in a PAR-dependent manner. Vascul. Pharmacol. 2014;62(2):63–71.
  • Frank RD, Schabbauer G, Holscher T, et al. The synthetic pentasaccharide fondaparinux reduces coagulation, inflammation and neutrophil accumulation in kidney ischemia-reperfusion injury. J. Thromb. Haemost. JTH. 2005;3(3):531–540.
  • Frank RD, Holscher T, Schabbauer G, et al. A non-anticoagulant synthetic pentasaccharide reduces inflammation in a murine model of kidney ischemia-reperfusion injury. Thromb. Haemost. 2006;96(6):802–806.
  • Hull RD, Pineo GF, Brant R, et al. Home therapy of venous thrombosis with long-term LMWH versus usual care: patient satisfaction and post-thrombotic syndrome. Am. J. Med. 2009;122(8):762–769.e3.
  • Gonzalez-Fajardo JA, Arreba E, Castrodeza J, et al. Venographic comparison of subcutaneous low-molecular weight heparin with oral anticoagulant therapy in the long-term treatment of deep venous thrombosis. J. Vasc. Surg. 1999;30(2):283–292.
  • López-Beret P, Orgaz A, Fontcuberta J, et al. Low molecular weight heparin versus oral anticoagulants in the long-term treatment of deep venous thrombosis. J. Vasc. Surg. 2001;33(1):77–90.
  • Romera A, Cairols MA, Vila-Coll R, et al. A randomised open-label trial comparing long-term sub-cutaneous low-molecular-weight heparin compared with oral-anticoagulant therapy in the treatment of deep venous thrombosis. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2009;37(3):349–356.
  • Daskalopoulos ME, Daskalopoulou SS, Tzortzis E, et al. Long-term treatment of deep venous thrombosis with a low molecular weight heparin (tinzaparin): a prospective randomized trial. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2005;29(6):638–650.
  • van Dongen CJJ, Prandoni P, Frulla M, et al. Relation between quality of anticoagulant treatment and the development of the postthrombotic syndrome. J. Thromb. Haemost. JTH. 2005;3(5):939–942.
  • Ziegler S, Schillinger M, Maca TH, et al. Post-thrombotic syndrome after primary event of deep venous thrombosis 10 to 20 years ago. Thromb. Res. 2001;101(2):23–33.
  • Jeraj L, Jezovnik MK, Poredos P. Rivaroxaban versus warfarin in the prevention of post-thrombotic syndrome. Thromb. Res. 2017;157:46–48.
  • Cheung YW, Middeldorp S, Prins MH, et al. Post-thrombotic syndrome in patients treated with rivaroxaban or enoxaparin/vitamin K antagonists for acute deep-vein thrombosis. A post-hoc analysis. Thromb. Haemost. 2016;116(4):733–738.
  • Kearon C, Comp P, Douketis J, et al. Dose-response study of recombinant human soluble thrombomodulin (ART-123) in the prevention of venous thromboembolism after total hip replacement. J. Thromb. Haemost. JTH. 2005;3(5):962–968.
  • Loghmani H, Conway EM. Exploring traditional and nontraditional roles for thrombomodulin. Blood. 2018;132(2):148–158.