683
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sulfhydryl compound levels are associated with ATO-induced side effects in acute promyelocytic leukemia patients

, , , , &
Article: 2231738 | Received 01 Mar 2023, Accepted 27 Jun 2023, Published online: 07 Jul 2023

References

  • Kuo YJ, Liu YJ, Way TD, et al. Synergistic inhibition of leukemia WEHI-3 cell growth by arsenic trioxide and Hedyotis diffusa Willd extract in vitro and in vivo. Exp Ther Med. 2017;13(6):3388–3396. doi:10.3892/etm.2017.4392
  • Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–121. doi:10.1056/NEJMoa1300874
  • Shinjo K, Takeshita A, Sahara N, et al. Delayed recovery of normal hematopoiesis in arsenic trioxide treatment of acute promyelocytic leukemia: a comparison to all-trans retinoic acid treatment. Intern Med. 2005;44(8):818–824. doi:10.2169/internalmedicine.44.818
  • Wang H, Xi S, Liu Z, et al. Arsenic methylation metabolism and liver injury of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Environ Toxicol. 2013;28(5):267–275. doi:10.1002/tox.20717
  • Zhou J, Zhang Y, Li J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010;115(9):1697–1702. doi:10.1182/blood-2009-07-230805
  • Flanagan B, Keber B, Mumford J, et al. Hematologic conditions: leukocytosis and leukemia. FP Essent. 2019;485:17–23.
  • Mathews V, Desire S, George B, et al. Hepatotoxicity profile of single agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia, its impact on clinical outcome and the effect of genetic polymorphisms on the incidence of hepatotoxicity. Leukemia. 2006;20:881–883. doi:10.1038/sj.leu.2404165
  • Maimaitiyiming Y, Zhu H, Yang C, et al. Biotransformation of arsenic trioxide by AS3MT favors eradication of acute promyelocytic leukemia: revealing the hidden facts. Drug Metab Rev. 2020;52(3):425–437. doi:10.1080/03602532.2020.1791173
  • Maimaitiyiming Y, Wang C, Xu S. Role of arsenic (+3 oxidation state) methyltransferase in arsenic mediated APL treatment: an in vitro investigation. Metallomics. 2018;10(6):828–837. doi:10.1039/C8MT00057C
  • Sui M, Zhang Z, Zhou J. Inhibition factors of arsenic trioxide therapeutic effects in patients with acute promyelocytic leukemia. Chin Med J (Engl). 2014;127(19):828–837. doi:10.1039/C8MT00057C
  • Khairul I, Wang QQ, Jiang YH, et al. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget. 2017;8(14):23905–23906. doi:10.18632/oncotarget.14733
  • Iriyama N, Yoshino Y, Yuan B, et al. Speciation of arsenic trioxide metabolites in peripheral blood and bone marrow from an acute promyelocytic leukemia patient. J Hematol Oncol. 2012;5:1. doi:10.1186/1756-8722-5-1
  • Zhang Z, Chen Y, Meng H, et al. Determination of arsenic metabolites in patients with newly diagnosed acute promyelocytic leukemia treated with arsenic trioxide. Leuk Lymphoma. 2013;54(9):2041–2046. doi:10.3109/10428194.2013.769222
  • Šlejkovec Z, Podgornik H, Černelč P, et al. Exceptions in patterns of arsenic compounds in urine of acute promyelocytic leukaemia patients treated with As2O3. Biometal. 2016;29(1):107–118. doi:10.1007/s10534-015-9901-5
  • Akao Y, Yamada H, Nakagawa Y. Arsenic-induced apoptosis in malignant cells in vitro. Leuk Lymphoma. 2000;37(1):53–63. doi:10.3109/10428190009057628
  • Mathews VV, Paul MS, Abhilash M, et al. Mitigation of hepatotoxic effects of arsenic trioxide through omega-3 fatty acid in rats. Toxicol Ind Health. 2014;30(9):806–813. doi:10.1177/0748233712463778
  • Rech VC, Mezzomo NJ, Athaydes GA, et al. Thiol/disulfide status regulates the activity of thiol-containing kinases related to energy homeostasis in rat kidney. An Acad Bras Cienc. 2018;90(1):99–108. doi:10.1590/0001-3765201720160348
  • Jung K, Kwak M. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules. 2010;15(10):7266–7291. doi:10.3390/molecules15107266
  • Maimaitiyiming Y, Wang QQ, Yang C, et al. Hyperthermia selectively destabilizes oncogenic fusion proteins. Blood Cancer Discov. 2021;2(4):388–401. doi:10.1158/2643-3230.BCD-20-0188
  • Kitamura K, Minami Y, Yamamoto K, et al. Involvement of CD95-independent caspase 8 activation in arsenic trioxide-induced apoptosis. Leukemia. 2000;14:1743–1750. doi:10.1038/sj.leu.2401900
  • Kiguchi T, Yoshino Y, Yuan B, et al. Speciation of arsenic trioxide penetrates into cerebrospinal fluid in patients with acute promyelocytic leukemia. Leuk Res. 2010;34(3):403–405. doi:10.1016/j.leukres.2009.08.001
  • Kann S, Estes C, Reichard JF, et al. Butylhydroquinone protects cells genetically deficient in glutathione biosynthesis from arsenite-induced apoptosis without significantly changing their prooxidant status. Toxicol Sci. 2005;87(2):365–384. doi:10.1093/toxsci/kfi253
  • Akao Y, Nakagawa Y, Akiyama K. Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase3 in vitro. FEBS Lett. 1999;455(1):59–62. doi:10.1016/s0014-5793(99)00841-8
  • Gribble MO, Tang WY, Shang Y, et al. Differential methylation of the arsenic (III) methyltransferase promoter according to arsenic exposure. Arch Toxicol. 2014;88(2):275–282. doi:10.1007/s00204-013-1146-x
  • Howe CG, Niedzwiecki MM, Hall MN, et al. Folate and cobalamin modify associations between S-adenosylmethionine and methylated arsenic metabolites in arsenic-exposed Bangladeshi adults. J Nutr. 2014;144(5):690–697. doi:10.3945/jn.113.188789