1,029
Views
2
CrossRef citations to date
0
Altmetric
Case Report

Partial response to venetoclax and ruxolitinib combination in a case of refractory T-prolymphocytic leukemia

, , , &
Article: 2237342 | Received 19 Apr 2023, Accepted 19 Jun 2023, Published online: 24 Jul 2023

References

  • Dearden CE, Matutes E, Cazin B, et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98:1721–1726. doi:10.1182/blood.V98.6.1721
  • Wiktor-Jedrzejczak W, Drozd-Sokolowska J, Eikema DJ, et al. EBMT prospective observational study on allogeneic hematopoietic stem cell transplantation in T-prolymphocytic leukemia (T-PLL). Bone Marrow Transplant. 2019 Sep;54(9):1391–1398. doi:10.1038/s41409-019-0448-x
  • Dholaria BR, Ayala E, Sokol L, et al. Allogeneic hematopoietic cell transplantation in T-cell prolymphocytic leukemia: a single-center experience. Leuk Res. 2018;67:1–5. doi:10.1016/j.leukres.2018.01.009
  • Krishnan B, Else M, Tjonnfjord G, et al. Stem cell transplantation after alemtuzumab in T-cell prolymphocytic leukaemia results in longer survival than after alemtuzumab alone: a multicentre retrospective study. Br J Haematol. 2010 Jun;149(6):907–910. doi:10.1111/j.1365-2141.2010.08134.x
  • Khot A. Where do we currently stand with T-cell prolymphocytic leukemia? Leuk Lymphoma. 2019;60:563–565. doi:10.1080/10428194.2018.1551543
  • Andersson EI, Putzer S, Yadav B, et al. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia. 2018 Mar;32(3):774–787. doi:10.1038/leu.2017.252
  • Shi Z, Yu J, Shao H, et al. Exploring the molecular pathogenesis associated with T-cell prolymphocytic leukemia based on a comprehensive bioinformatics analysis. Oncol Lett. 2018 Jul;16(1):301–307. doi:10.3892/ol.2018.8615
  • Lopez C, Bergmann A, Paul U, et al. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br J Haematol. 2016 Apr;173(2):265–273. doi:10.1111/bjh.13952
  • Stengel A, Kern W, Zenger M, et al. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer. 2016 Jan;55(1):82–94. doi:10.1002/gcc.22313
  • Kiel MJ, Velusamy T, Rolland D, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood. 2014;124:1460–1472. doi:10.1182/blood-2014-03-559542
  • Bergmann AK, Schneppenheim S, Seifert M, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2014 Apr;53(4):309–316. doi:10.1002/gcc.22141
  • Greenplate A, Wang K, Tripathi R, et al. Genomic profiling of T-cell neoplasms reveals frequent JAK1 and JAK3 mutations with clonal evasion from targeted therapies. JCO Precis Oncol. 2018;2:1–16. doi:10.1200/PO.17.00019
  • Li G, Waite E, Wolfson J. T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib). Blood Adv. 2017 Dec 18;1(27):2724–2728. doi:10.1182/bloodadvances.2017010470
  • Wei M, Koshy N, van Besien K, et al. Refractory T-cell prolymphocytic leukemia with JAK3 mutation: in vitro and clinical synergy of tofacitinib and ruxolitinib. Blood. 2015;126:5486. doi:10.1182/blood.V126.23.5486.5486
  • Boidol B, Kornauth C, van der Kouwe E, et al. First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia. Blood. 2017 Dec 7;130(23):2499–2503. doi:10.1182/blood-2017-05-785683
  • Hampel P, Parikh S, Call T, et al. Venetoclax treatment of patients with relapsed T-cell prolymphocytic leukemia. Blood Cancer J. 2021 Mar;11(3):47. doi:10.1038/s41408-021-00443-1
  • Staber P, Herling M, Bellido M, et al. Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia. Blood. 2019;134(14):1132–1143. doi:10.1182/blood.2019000402
  • Furumoto Y, Gadina M. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders. BioDrugs. 2013 Oct;27(5):431–438. doi:10.1007/s40259-013-0040-7
  • Degryse S, de Bock C, Cox L, et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood. 2014;124:3092–3100. doi:10.1182/blood-2014-04-566687
  • Duenas-Perez A, Mead A. Clinical potential of pacritinib in the treatment of myelofibrosis. Ther Adv Hematol. 2015 Aug;6(4):186–201. doi:10.1177/2040620715586527
  • Karjalainen R, Pemovska T, Popa M, et al. JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell-induced protection of AML. Blood. 2017 Aug 10;130(6):789–802. doi:10.1182/blood-2016-02-699363
  • Senkevitch E, Li W, Hixon J, et al. Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget. 2018 Apr 27;9(32):22605–22617. doi:10.18632/oncotarget.25194
  • Herbaux C, Kornauth C, Poulain S, et al. BH3 profiling identifies ruxolitinib as a promising partner for venetoclax to treat T-cell prolymphocytic leukemia. Blood. 2021;137(25):3495–3506. doi:10.1182/blood.2020007303
  • Herbaux C, Poulain S, Roos-Weil D, et al. Preliminary study of ruxolitinib and venetoclax for treatment of patients with T-cell prolymphocytic leukemia refractory to, or ineligible for alemtuzumab. Blood. 2021;138(Supplement 1):1201. doi:10.1182/blood-2021-149228