1,190
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Wilms’ tumor gene 1 in hematological malignancies: friend or foe?

, & ORCID Icon
Article: 2254557 | Received 27 Mar 2023, Accepted 29 Aug 2023, Published online: 05 Sep 2023

References

  • Call KM, Glaser T, Ito CY, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell. 1990;60(3):509–520. doi:10.1016/0092-8674(90)90601-A
  • Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: the WT1 story. Leukemia. 2007;21(5):868–876. doi:10.1038/sj.leu.2404624
  • Qi XW, Zhang F, Wu H, et al. Wilms’ tumor 1 (WT1) expression and prognosis in solid cancer patients: a systematic review and meta-analysis. Sci Rep. 2015;5:8924. doi:10.1038/srep08924
  • Rampal R, Figueroa ME. Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia. Haematologica. 2016;101(6):672–679. doi:10.3324/haematol.2015.141796
  • Hou HA, Huang TC, Lin LI, et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: stability during disease evolution and implication of its incorporation into a survival scoring system. Blood. 2010;115(25):5222–5231. doi:10.1182/blood-2009-12-259390
  • Luo P, Jing W, Yi K, et al. Wilms’ tumor 1 gene in hematopoietic malignancies: clinical implications and future directions. Leuk Lymphoma. 2020;61(9):2059–2067. doi:10.1080/10428194.2020.1762884
  • Awada H, Durmaz A, Gurnari C, et al. The genomic landscape of Wilms’ tumor 1 (WT1) mutant acute myeloid leukemia. Blood. 2020;136(Supplement 1):28.
  • Ahmad EI, El-Akad GM, Ismail WI, et al. Study of Wilms’ tumor 1 gene expression in patients with acute myeloid leukemia. Egypt J Haematol. 2019;44(4):195–203. doi:10.4103/ejh.ejh_26_19
  • Adnan-Awad S, Meligui YME, Salem SE, et al. Prognostic impact of WT-1 and survivin gene expression in acute myeloid leukemia patients. Clin Lab. 2019;65(4):435–444.
  • Augsberger C, Hänel G, Xu W, et al. Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC specific T-cell bispecific antibody. Blood. 2021;138(25):2655–2669. doi:10.1182/blood.2020010477
  • Shandilya J, Roberts SG. A role of WT1 in cell division and genomic stability. Cell Cycle. 2015;14(9):1358–1364. doi:10.1080/15384101.2015.1021525
  • Chau YY, Hastie ND. The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet. 2012;28(10):515–524. doi:10.1016/j.tig.2012.04.004
  • Wilm B, Muñoz-Chapuli R. The role of WT1 in embryonic development and normal organ homeostasis. Meth Mol Biol. 2016; 1467:23–39. doi:10.1007/978-1-4939-4023-3_3
  • Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–5201. doi:10.1200/JCO.2009.22.4865
  • Pritchard-Jones K, Fleming S, Davidson D, et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature. 1990;346(6280):194–197. doi:10.1038/346194a0
  • Ullmark T, Montano G, Gullberg U. DNA and RNA binding by the Wilms’ tumour gene 1 (WT1) protein + KTS and -KTS isoforms-from initial observations to recent global genomic analyses. Eur J Haematol. 2018;100(3):229–240. doi:10.1111/ejh.13010
  • Haber DA, Sohn RL, Buckler AJ, et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA. 1991;88(21):9618–9622. doi:10.1073/pnas.88.21.9618
  • Kramarzova K, Stuchly J, Willasch A, et al. Real-time PCR quantification of major Wilms’ tumor gene 1 (WT1) isoforms in acute myeloid leukemia, their characteristic expression patterns and possible functional consequences. Leukemia. 2012;26(9):2086–2095. doi:10.1038/leu.2012.76
  • Klamt B, Koziell A, Poulat F, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet. 1998;7(4):709–714. doi:10.1093/hmg/7.4.709
  • Potluri S, Assi SA, Chin PS, et al. Isoform-specific and signaling-dependent propagation of acute myeloid leukemia by Wilms tumor 1. Cell Rep. 2021;35(3):109010. doi:10.1016/j.celrep.2021.109010
  • Kreidberg JA, Sariola H, Loring JM, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–691. doi:10.1016/0092-8674(93)90515-R
  • Duim SN, Goumans MJ, Kruithof BPT. WT1 in cardiac development and disease. In: van den Heuvel-Eibrink MM, editor. Wilms tumor. Brisbane, AU: Codon; 2016.
  • Herzer U, Crocoll A, Barton D, et al. The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr Biol. 1999;9(15):837–840. doi:10.1016/S0960-9822(99)80369-8
  • Ijpenberg A, Pérez-Pomares JM, Guadix JA, et al. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev Biol. 2007;312(1):157–170. doi:10.1016/j.ydbio.2007.09.014
  • Cano E, Carmona R, Muñoz-Chápuli R. Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am J Phys Lung Cell Mol Physiol. 2013;305(4):L322–L332. doi:10.1152/ajplung.00424.2012
  • Ariza L, Cañete A, Rojas A, et al. Role of the Wilms’ tumor suppressor gene Wt1 in pancreatic development. Dev Dyn. 2018;247(7):924–933. doi:10.1002/dvdy.24636
  • Wagner KD, Wagner N, Vidal VP, et al. The Wilms’ tumor gene Wt1 is required for normal development of the retina. EMBO J. 2002;21(6):1398–1405. doi:10.1093/emboj/21.6.1398
  • Ito K, Oji Y, Tatsumi N, et al. Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene. 2006;25(30):4217–4229. doi:10.1038/sj.onc.1209455
  • Gu WY, Chen ZX, Hu SY, et al. Changes in expression of WT1 isoforms during induced differentiation of the NB4 cell line. Haematologica. 2005;90(3):403–405.
  • Bissanum R, Lirdprapamongkol K, Svasti J, et al. The role of WT1 isoforms in vasculogenic mimicry and metastatic potential of human triple negative breast cancer cells. Biochem Biophys Res Commun. 2017;494(1-2):256–262. doi:10.1016/j.bbrc.2017.10.043
  • Oji Y, Tatsumi N, Kobayashi J, et al. Wilms’ tumor gene WT1 promotes homologous recombination-mediated DNA damage repair. Mol Carcinog. 2015;54(12):1758–1771. doi:10.1002/mc.22248
  • Yao YY, Chai XX, Gong C, et al. WT1 inhibits AML cell proliferation in a p53-dependent manner. Cell Cycle. 2021;20(16):1552–1560. doi:10.1080/15384101.2021.1951938
  • Cao LX, Zhang J, Ren HJ, et al. Effect of down-regulation of miR-23b-3p on the differentiation of acute myeloid leukemia via Wilms cancer gene 1. J Biomater Tissue Eng. 2021;11(7):1377–1382. doi:10.1166/jbt.2021.2696
  • Zhou B, Jin XH, Jin WW, et al. WT1 facilitates the self-renewal of leukemia-initiating cells through the upregulation of BCL2L2: WT1-BCL2L2 axis as a new acute myeloid leukemia therapy target. J Transl Med. 2020;18(1).
  • Lyu Y, Lou J, Yang Y, et al. Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways. Leukemia. 2017;31(12):2543–2551. doi:10.1038/leu.2017.116
  • Liu JM, Li M, Luo W, et al. Curcumin attenuates Adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. Lab Invest. 2021;101(10):1308–1317. doi:10.1038/s41374-021-00640-3
  • Christopher MJ, Katerndahl CDS, LeBlanc HR, et al. Tumor suppressor function of WT1 in acute promyelocytic leukemia. Haematologica. 2021;107(1):342–346. doi:10.3324/haematol.2021.279601
  • Christopher M, Menssen A, Gang M, et al. Expression of the tumor suppressor WT1 Is induced By PML-rara in acute promyelocytic leukemia. Â. Blood. 2017;130:2508.
  • Wagstaff M, Tsaponina O, Caalim G, et al. Crosstalk between β-catenin and WT1 signaling activity in acute myeloid leukemia. Haematologica. 2023;108(1):283–289. doi:10.3324/haematol.2021.280294
  • Wang Y, Weng WJ, Zhou DH, et al. Wilms tumor 1 mutations are independent poor prognostic factors in pediatric acute myeloid leukemia. Front Oncol. 2021;11:632094. doi:10.3389/fonc.2021.632094
  • Marceau-Renaut A, Duployez N, Ducourneau B, et al. Molecular profiling defines distinct prognostic subgroups in childhood AML: a report from the French ELAM02 study group. Hemasphere. 2018;2(1):e31. doi:10.1097/HS9.0000000000000031
  • Wang S, Zhang YX, Huang T, et al. Mutation profile and associated clinical features in Chinese patients with cytogenetically normal acute myeloid leukemia. Int J Lab Hematol. 2018;40(4):408–418. doi:10.1111/ijlh.12802
  • Liu H, Wang X, Zhang H, et al. Dynamic changes in the level of WT1 as an MRD marker to predict the therapeutic outcome of patients with AML with and without allogeneic stem cell transplantation. Mol Med Rep. 2019;20(3):2426–2432.
  • Duléry R, Nibourel O, Gauthier J, et al. Impact of Wilms’ tumor 1 expression on outcome of patients undergoing allogeneic stem cell transplantation for AML. Bone Marrow Transplant. 2017;52(4):539–543. doi:10.1038/bmt.2016.318
  • Deng DX, Wen JJ, Cheng YF, et al. Wilms’ tumor gene 1 is an independent prognostic factor for pediatric acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation. BMC Cancer. 2021;21(1):292. doi:10.1186/s12885-021-08022-0
  • Qin YZ, Wang Y, Xu LP, et al. Subgroup analysis can optimize the relapse-prediction cutoff value for WT1 expression after allogeneic hematologic stem cell transplantation in acute myeloid leukemia. J Mol Diagn. 2020;22(2):188–195. doi:10.1016/j.jmoldx.2019.10.003
  • Cho BS, Min GJ, Kim H, et al. Measurable residual disease assay with WT1 expression in acute myeloid leukemia Who underwent allogeneic hematopoietic stem cell transplantation; optimal threshold, time points, and candidates. Blood. 2018;132(Supplement 1):2759. doi:10.1182/blood-2018-99-110042
  • Yoon JH, Kim HJ, Park SS, et al. Clinical outcome of autologous hematopoietic cell transplantation in adult patients with acute myeloid leukemia: who may benefit from autologous hematopoietic cell transplantation? Biol Blood Marrow Transpt. 2017;23(4):588–597. doi:10.1016/j.bbmt.2017.01.070
  • Valkova V, Vydra J, Markova M, et al. WT1 gene expression in peripheral blood before and after allogeneic stem cell transplantation is a clinically relevant prognostic marker in AML – a single-center 14-year experience. Clin Lymphoma Myeloma Leuk. 2021;21(2):e145–e151. doi:10.1016/j.clml.2020.09.008
  • Ido K, Nakamae M, Koh H, et al. The proportional relationship between pretransplant WT1 mRNA levels and risk of mortality after allogeneic hematopoietic cell transplantation in acute myeloid leukemia not in remission. Transplantation. 2019;103(10):2201–2210. doi:10.1097/TP.0000000000002662
  • Candoni A, De Marchi F, Zannier ME, et al. High prognostic value of pre-allogeneic stem cell transplantation minimal residual disease detection by WT1 gene expression in AML transplanted in cytologic complete remission. Leuk Res. 2017;63:22–27. doi:10.1016/j.leukres.2017.10.010
  • Candoni A, De Marchi F, Zanini F, et al. Predictive value of pretransplantation molecular minimal residual disease assessment by WT1 gene expression in FLT3-positive acute myeloid leukemia. Exp Hematol. 2017;49:25–33. doi:10.1016/j.exphem.2017.01.005
  • Rautenberg C, Lauseker M, Kaivers J, et al. Prognostic impact of pretransplant measurable residual disease assessed by peripheral blood WT1-mRNA expression in patients with AML and MDS. Eur J Haematol. 2021;107(2):283–292. doi:10.1111/ejh.13664
  • Mashima K, Oh I, Ikeda T, et al. Role of sequential monitoring of WT1 gene expression in patients with acute myeloid leukemia for the early detection of leukemia relapse. Clin Lymphoma Myeloma Leuk. 2018;18(12):e521–e527. doi:10.1016/j.clml.2018.07.298
  • Ikeno S, Seto A, Sato T, et al. Retrospective analyses of wilms tumor gene-1 expression in acute myeloid leukemia and myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Tr. 2018;24(3):S234. doi:10.1016/j.bbmt.2017.12.218
  • Rautenberg C, Pechtel S, Hildebrandt B, et al. Wilms’ tumor 1 gene expression using a standardized European LeukemiaNet-certified assay compared to other methods for detection of minimal residual disease in myelodysplastic syndrome and acute myelogenous leukemia after allogeneic blood stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(11):2337–2343. doi:10.1016/j.bbmt.2018.05.011
  • De Marchi F, Candoni A, Zannier ME, et al. Concomitant monitoring of WT1 and FLT3-ITD expression in FLT3-ITD acute myeloid leukemia patients: which should we trust as a minimal residual disease marker? Am J Hematol. 2017;92(5):E72–E74. doi:10.1002/ajh.24686
  • Larisa G, Irina B, Rinat B, et al. Early reduction of WT1 transcript level during induction chemotherapy predicts for longer relapse-free and overall survival in de novo intermediate risk acute myeloid leukemia. Cl Lymph Myelom Leuk. 2018;18:S198.
  • Hao Y, Cheng Y, Wu Q, et al. Combined usage of Wilms’ tumor gene quantitative analysis and multiparameter flow cytometry for minimal residual disease monitoring of acute myeloid leukemia patients after allogeneic hematopoietic stem cells transplantation. Exp Ther Med. 2018;15(2):1403–1409.
  • Guolo F, Minetto P, Clavio M, et al. Combining flow cytometry and WT1 assessment improves the prognostic value of pre-transplant minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102(9):e348–e351. doi:10.3324/haematol.2017.167254
  • Giudice V, Gorrese M, Vitolo R, et al. WT1 expression levels combined with flow cytometry blast counts for risk stratification of acute myeloid leukemia and myelodysplastic syndromes. Biomedicines. 2021;9(4):387. doi:10.3390/biomedicines9040387
  • Šálek C, Vydra J, Cerovská E, et al. WT1 expression in peripheral blood at diagnosis and during the course of early consolidation treatment correlates with survival in patients With intermediate and poor-risk acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2020;20(12):e998–e1009. doi:10.1016/j.clml.2020.07.014
  • Du D, Zhu L, Wang Y, et al. Expression of WT1 gene and its prognostic value in patients with acute myeloid leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019;48(1):50–57.
  • Martinez-Laperche C, Kwon M, Franco-Villegas AC, et al. Wilms tumor 1 gene expression levels improve risk stratification in AML patients. results of a multicentre study within the spanish group for molecular biology in haematology. Br J Haematol. 2018;181(4):542–546. doi:10.1111/bjh.14635
  • Marjanovic I, Karan-Djurasevic T, Ugrin M, et al. Use of Wilms tumor 1 gene expression as a reliable marker for prognosis and minimal residual disease monitoring in acute myeloid leukemia With normal karyotype patients. Clin Lymphoma Myeloma Leuk. 2017;17(5):312–319. doi:10.1016/j.clml.2016.12.006
  • Frairia C, Aydin S, Audisio E, et al. Post-remissional and pre-transplant role of minimal residual disease detected by WT1 in acute myeloid leukemia: a retrospective cohort study. Leuk Res. 2017;61:10–17. doi:10.1016/j.leukres.2017.08.008
  • Lambert J, Lambert J, Thomas X, et al. Early detection of WT1 measurable residual disease identifies high-risk patients independently of transplantation in AML. Blood Adv. 2021;5(23):5258. doi:10.1182/bloodadvances.2021004322
  • Yoon JH, Kim HJ, Kwak DH, et al. High WT1 expression is an early predictor for relapse in patients with acute promyelocytic leukemia in first remission with negative PML-RARa after anthracycline-based chemotherapy: a single-center cohort study. J Hematol Oncol. 2017;10(1):30. doi:10.1186/s13045-017-0404-4
  • Cho BS, Shin SH, Lee SE, et al. Clinical outcomes of decitabine and the role of WT-1 expression as a surrogate prognostic marker for patients with elderly acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2018;18:S200–S201.
  • Bani-Ahmad MA, Al-Sweedan SA, Al-Asseiri MA, et al. A proposed kinetic model for the diagnostic and prognostic value of WT1 and p53 in acute myeloid leukemia. Clin Lab. 2018;64(3):357–363.
  • Hidaka D, Onozawa M, Hashiguchi J, et al. Wilms tumor 1 expression at diagnosis correlates With genetic abnormalities and polymorphism but is not independently prognostic in acute myelogenous leukemia: a hokkaido leukemia net study. Clin Lymphoma Myeloma Leuk. 2018;18(11):e469–e479. doi:10.1016/j.clml.2018.07.291
  • Mitrovic M, Kostic T, Virijevic M, et al. The influence of Wilms’ tumor 1 gene expression level on prognosis and risk stratification of acute promyelocytic leukemia patients. Int J Lab Hematol. 2020;42(1):82–87. doi:10.1111/ijlh.13144
  • Niktoreh N, Walter C, Zimmermann M, et al. Mutated WT1, FLT3-ITD, and NUP98-NSD1 fusion in various combinations define a poor prognostic group in pediatric acute myeloid leukemia. J Oncol. 2019;2019:1609128.
  • Bhatnagar B, Kohlschmidt J, Orwick S, et al. Framework of clonal mutations concurrent with WT1 mutations in adults with acute myeloid leukemia: alliance for clinical trials in oncology study. Blood Adv. 2023;7(16):4671–4675. doi:10.1182/bloodadvances.2023010482
  • El Hussein S, DiNardo CD, Takahashi K, et al. Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplant. 2022;57(3):370–376. doi:10.1038/s41409-021-01538-w
  • Tien FM, Hou HA, Tang JL, et al. Concomitant WT1 mutations predict poor prognosis in acute myeloid leukemia patients with double mutant CEBPA. Haematologica. 2018;103(11):e510–e513. doi:10.3324/haematol.2018.189043
  • Petiti J, Rosso V, Lo Iacono M, et al. Prognostic significance of The Wilms’ Tumor-1 (WT1) rs16754 polymorphism in acute myeloid leukemia. Leuk Res. 2018;67:6–11. doi:10.1016/j.leukres.2018.01.016
  • Bedair HM, Attia MH, Gohar SF, et al. The prognostic impact of wilms tumor-1 polymorphism (rs16754) and human myeloid inhibitory C-type lectin-like receptor expression in cytogenetically normal-acute myeloid leukemia. Egyptian J. Med Human Genet. 2021;22(1).
  • Ramzi M, Moghadam M, Cohan N. Wilms tumor-1 (WT1) rs16754 polymorphism and clinical outcome in acute myeloid leukemia. Turk J Haematol. 2019;36(1):67–68. doi:10.4274/tjh.galenos.2018.2018.0277
  • Toogeh G, Ramzi M, Faranoush M, et al. Prevalence and prognostic impact of Wilms’ tumor 1 (WT1) gene, including SNP rs16754 in cytogenetically normal acute myeloblastic leukemia (CN-AML): an Iranian experience. Clin Lymphoma Myeloma Leuk. 2016;16(3):e21–e26. doi:10.1016/j.clml.2015.11.017
  • Megías-Vericat JE, Herrero MJ, Rojas L, et al. A systematic review and meta-analysis of the impact of WT1 polymorphism rs16754 in the effectiveness of standard chemotherapy in patients with acute myeloid leukemia. Pharmacogenomics J. 2016;16(1):30–40. doi:10.1038/tpj.2015.80
  • Tosello V, Mansour MR, Barnes K, et al. WT1 mutations in T-ALL. Blood. 2009;114(5):1038–1045. doi:10.1182/blood-2008-12-192039
  • Bordin F, Piovan E, Masiero E, et al. WT1 loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica. 2018;103(2):266–277. doi:10.3324/haematol.2017.170431
  • Roy U, Raghavan SC. Deleterious point mutations in T-cell acute lymphoblastic leukemia: mechanistic insights into leukemogenesis. Int J Cancer. 2021;149(6):1210–1220. doi:10.1002/ijc.33527
  • Rodrigues GOL, Cramer SD, Winer HY, et al. Mutations that collaborate with IL-7Ra signaling pathways to drive ALL. Adv Biol Regul. 2021;80:100788. doi:10.1016/j.jbior.2021.100788
  • Wang SJ, Wang C, Li T, et al. WT1 overexpression predicted good outcomes in adult B-cell acute lymphoblastic leukemia patients receiving chemotherapy. Hematology. 2020;25(1):118–124. doi:10.1080/16078454.2020.1735670
  • Mikhael NL, Ibrahim AM, Helmy MA, et al. Wilms’ tumor gene (WT1) expression levels as prognostic marker in pediatric acute lymphoblastic leukemia. Egypt J Haematol. 2020;45(1):35–39. doi:10.4103/ejh.ejh_30_19
  • Yu F, Shuang F, Jihong Z. Expression of WT1 gene and clinical significance in childhood acute B-cell lymphocytic leukemia of different immunophenotypes. Eur J Immunol. 2019;49:1537–1537.
  • Huang QS, Wang JZ, Qin YZ, et al. Overexpression of WT1 and PRAME predicts poor outcomes of patients with myelodysplastic syndromes with thrombocytopenia. Blood Adv. 2019;3(21):3406–3418. doi:10.1182/bloodadvances.2019000564
  • Du X, Geng S, Weng J, et al. WT1 mRNA expression is a good laboratory indicator for diagnosis of disease progression in MDS patients with stable disease. Leukemia Res. 2017;55:S133. doi:10.1016/S0145-2126(17)30342-9
  • Zhang HY, Geng SX, Li MM, et al. Changes of WT1 mRNA expression level in patients with myelodysplastic syndromes after hypomethylating agents and its prognostic significance. Zhonghua Xue Ye Xue Za Zhi. 2019;40(5):417–421.
  • Jiang Y, Liu L, Wang J, et al. The Wilms’ tumor gene-1 is a prognostic factor in myelodysplastic syndrome: a meta analysis. Oncotarget. 2018;9(22):16205–16212. doi:10.18632/oncotarget.23671
  • Nagasaki J, Aoyama Y, Hino M, et al. Wilms tumor 1 (WT1) mRNA expression level at diagnosis Is a significant prognostic marker in elderly patients with myelodysplastic syndrome. Acta Haematol. 2017;137(1):32–39. doi:10.1159/000452732
  • Maeda T, Matsuda A, Asou C, et al. Prognostic impact of peripheral blood Wilms’ tumour 1 mRNA expression levels in response to azacytidine in MDS: a single-centre analysis. Leuk Res Rep. 2021;15:100231.
  • Rautenberg C, Germing U, Pechtel S, et al. Prognostic impact of peripheral blood WT1-mRNA expression in patients with MDS. Blood Cancer J. 2019;9(11):86. doi:10.1038/s41408-019-0248-y
  • Anuchapreeda S, Rungrojsakul M, Tima S, et al. Co-activation of WT1 and AP-1 proteins on WT1 gene promoter to induce WT1 gene expression in K562 cells. Cell Signal. 2019;53:339–347. doi:10.1016/j.cellsig.2018.11.001
  • Zhang L, Li Y, Li X, et al. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells. Oncol Lett. 2017;14(3):3862–3868. doi:10.3892/ol.2017.6628
  • Svensson E, Vidovic K, Lassen C, et al. Deregulation of the Wilms’ tumour gene 1 protein (WT1) by BCR/ABL1 mediates resistance to imatinib in human leukaemia cells. Leukemia. 2007;21(12):2485–2494. doi:10.1038/sj.leu.2404924
  • Ullmark T, Montano G, Järvstråt L, et al. Anti-apoptotic quinolinate phosphoribosyltransferase (QPRT) is a target gene of Wilms’ tumor gene 1 (WT1) protein in leukemic cells. Biochem Biophys Res Commun. 2017;482(4):802–807. doi:10.1016/j.bbrc.2016.11.114
  • El-Menoufy MAM, Ahmed MAR. Wilms’ tumor gene 1 expression can predict sudden disease progression to blast crisis in patients with chronic myeloid leukemia receiving imatinib therapy. Egypt J Haematol. 2018;43(1):38–43. doi:10.4103/ejh.ejh_5_18
  • Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49(2):204–212. doi:10.1038/ng.3742
  • Alexander TB, Gu Z, Iacobucci I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562(7727):373–379. doi:10.1038/s41586-018-0436-0
  • Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–5201. doi:10.1200/JCO.2009.22.4865
  • Dijk J, Knops G, Locht L, et al. Abnormal WT1 expression in the CD34-negative compartment in myelodysplastic bone marrow. Br J Haematol. 2002;118(4):1027–1033. doi:10.1046/j.1365-2141.2002.03728.x
  • Cilloni D, Messa F, Arruga F, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921–924. doi:10.3324/haematol.12165
  • Cho BS, Min GJ, Park SS, et al. WT1 measurable residual disease assay in patients With acute myeloid leukemia Who underwent allogeneic hematopoietic stem cell transplantation: optimal time points, thresholds, and candidates. Biol Blood Marrow Transp. 2019;25(10):1925–1932. doi:10.1016/j.bbmt.2019.05.033
  • Nomdedéu JF, Esquirol A, Carricondo M, et al. Bone marrow WT1 levels in allogeneic hematopoietic stem cell transplantation for acute myelogenous leukemia and myelodysplasia: clinically relevant time points and 100 copies threshold value. Biol Blood Marrow Transplant. 2018;24(1):55–63. doi:10.1016/j.bbmt.2017.09.001
  • Elisseeva OA, Oka Y, Tsuboi A, et al. Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood. 2002;99(9):3272–3279. doi:10.1182/blood.V99.9.3272
  • Plantinga M, Presti L, de Haar V, et al. Clinical grade production of wilms’ tumor-1 loaded cord blood-derived dendritic cells to prevent relapse in pediatric AML after cord blood transplantation. Front Immunol. 2020;11:559152. doi:10.3389/fimmu.2020.559152
  • Almshayakhchi R, Nagarajan D, Vadakekolathu J, et al. A novel HAGE/WT1-ImmunoBody(R) vaccine combination enhances anti-tumour responses when compared to either vaccine alone. Front Oncol. 2021;11:636977. doi:10.3389/fonc.2021.636977
  • Gao LQ, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34 + progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood. 2000;95(7):2198–2203. doi:10.1182/blood.V95.7.2198
  • Chapuis AG, Ragnarsson GB, Nguyen HN, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013;5(174):174ra127. doi:10.1126/scitranslmed.3004916
  • Spira A, Hansen AR, Harb WA, et al. Multicenter, open-label, phase I study of DSP-7888 dosing emulsion in patients with advanced malignancies. Target Oncol. 2021;16(4):461–469. doi:10.1007/s11523-021-00813-6
  • Maslak PG, Dao T, Bernal Y, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2018;2(3):224–234. doi:10.1182/bloodadvances.2017014175
  • Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–1721. doi:10.1182/blood-2017-04-780155
  • Minagawa H, Hashii Y, Nakajima H, et al. Enhanced antitumor activity of a novel, oral, helper epitope-containing WT1 protein vaccine in a model of murine leukemia. BMC Cancer. 2023;23(1):167. doi:10.1186/s12885-023-10547-5
  • Kiguchi T, Yamaguchi M, Takezako N, et al. Efficacy and safety of Wilms’ tumor 1 helper peptide OCV-501 in elderly patients with acute myeloid leukemia: a multicenter, randomized, double-blind, placebo-controlled phase 2 trial. Cancer Immun Immunr. 2022;71(6):1419–1430. doi:10.1007/s00262-021-03074-4
  • Naoe T, Saito A, Hosono N, et al. Immunoreactivity to WT1 peptide vaccine is associated with prognosis in elderly patients with acute myeloid leukemia: follow-up study of randomized phase II trial of OCV-501, an HLA class II-binding WT1 polypeptide. Cancer Immunol Immunother. 2023;72(8):2865–2871. doi:10.1007/s00262-023-03432-4
  • Shirakawa T, Kitagawa K. Antitumor effect of oral cancer vaccine with Bifidobacterium delivering WT1 protein to gut immune system is superior to WT1 peptide vaccine. Hum Vaccin Immunother. 2018;14(1):159–162. doi:10.1080/21645515.2017.1382787
  • Tawara I, Kageyama S, Miyahara Y, et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood. 2017;130(18):1985–1994. doi:10.1182/blood-2017-06-791202
  • Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019;25(7):1064–1072. doi:10.1038/s41591-019-0472-9
  • van Amerongen RA, Hagedoorn RS, Remst DFG, et al. WT1-specific TCRs directed against newly identified peptides install antitumor reactivity against acute myeloid leukemia and ovarian carcinoma. J Immunother Cancer. 2022;10(6):e004409. doi:10.1136/jitc-2021-004409
  • Walters JN, Ferraro B, Duperret EK, et al. A novel DNA vaccine platform enhances neo-antigen-like T cell responses against WT1 to break tolerance and induce anti-tumor immunity. Mol Ther. 2017;25(4):976–988. doi:10.1016/j.ymthe.2017.01.022
  • Chaise C, Buchan SL, Rice J, et al. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood. 2008;112(7):2956–2964. doi:10.1182/blood-2008-02-137695
  • Kim HJ, Sohn HJ, Hong JA, et al. Post-transplant immunotherapy with WT1-specific CTLs for high-risk acute myelogenous leukemia: a prospective clinical phase I/II trial. Bone Marrow Transplant. 2019;54(6):903–906. doi:10.1038/s41409-018-0383-2
  • Koehne G, Devlin S, Landau H, et al. WT1 heteroclitic epitope immunization following autologous stem cell transplantation induces WT1-specific immune responses and improves survival in patients with high-risk multiple myeloma. J Clin Oncol. 2017;35:8016. doi:10.1200/JCO.2017.35.15_suppl.8016
  • Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia. 1992;6(5):405–409.
  • Oji Y, Ogawa H, Tamaki H, et al. Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res. 1999;90(2):194–204. doi:10.1111/j.1349-7006.1999.tb00733.x
  • Oka Y, Udaka K, Tsuboi A, et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol. 2000;164(4):1873–1880. doi:10.4049/jimmunol.164.4.1873
  • Oka Y. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101(38):13885–13890. doi:10.1073/pnas.0405884101
  • Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323–5337. doi:10.1158/1078-0432.CCR-09-0737
  • Wang BH, Guan W, Lv N, et al. Genetic features and efficacy of decitabine-based chemotherapy in elderly patients with acute myeloid leukemia. Hematology. 2021;26(1):371–379. doi:10.1080/16078454.2021.1921434
  • Wang XR, Chang Y, Yuan XY, et al. Overexpressed WT1 exhibits a specific immunophenotype in intermediate and poor cytogenetic risk acute myeloid leukemia. Ann Hematol. 2020;99(2):215–221. doi:10.1007/s00277-019-03808-6
  • Ueda Y, Ogura M, Miyakoshi S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–2453. doi:10.1111/cas.13409