1,491
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Single-cell RNA seq analysis of erythroid cells reveals a specific sub-population of stress erythroid progenitors

, , , , , , , , & show all
Article: 2261802 | Received 01 Jun 2023, Accepted 18 Sep 2023, Published online: 04 Oct 2023

References

  • Bernhardt I, Wesseling MC, Nguen DB, et al. Red blood cells actively contribute to blood coagulation and thrombus formation. In: A Tombak, editor. Erythrocyte. London: IntechOpen; 2019: 17-32.
  • Helms CC, Gladwin MT, Kim-Shapiro DB. Erythrocytes and vascular function: oxygen and nitric oxide. Front Physiol. 2018;(9):125.
  • Pernow J, Mahdi A, Yang J, et al. Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovasc Res. 2019;115(11):1596–1605.
  • Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol. 2017;(8):1076.
  • Seu KG, Papoin J, Fessler R, et al. Unraveling macrophage heterogeneity in erythroblastic islands. Front Immunol. 2017;(8):1140.
  • Paulson RF, Ruan B, Hao S, et al. Stress erythropoiesis is a key inflammatory response. Cells. 2020;9(3):634.
  • Bennett LF, Liao C, Quickel MD, et al. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci Signal. 2019;12(598):eaap7336.
  • Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med. 2004;36(1):1–12.
  • Arezes J, Foy N, McHugh K, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14):1473–1477.
  • Xie X, Liu M, Zhang Y, et al. Single-cell transcriptomic landscape of human blood cells. Natl Sci Rev. 2021;8(3):nwaa180.
  • Jain V, Yang WH, Wu J, et al. Single cell RNA-seq analysis of human red cells. Front Physiol. 2022;(13):648.
  • Setup the Seurat Object. (2023). Seurat – guided clustering tutorial.
  • Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–1214.
  • McInnes L, Healy J, Melville J. (2018). Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
  • Lanclos KD, Oner C, Dimovski AJ, et al. (1991). Sequence variations in the 5'flanking and IVS-II regions of the G gamma-and A gamma-globin genes of beta S chromosomes with five different haplotypes.
  • Wang F, Yu J, Yang GH, et al. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res. 2011;21(8):1196–1209.
  • Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27.
  • Liebhaber SA, Goossens MJ, Kan YW. Cloning and complete nucleotide sequence of human 5'-alpha-globin gene. Proc Natl Acad Sci USA. 1980;77(12):7054–7058.
  • Silva-Pinto AC, Silva TJ, Moretto EL, et al. Blood donor homozygous for Hb D Los Angeles. Transfus Apher Sci. 2014;51(2):219–220.
  • Šimčíková D, Heneberg P. Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases. Sci Rep. 2019;9(1):1–17.
  • Shaw GC, Cope JJ, Li L, et al. Mitoferrin is essential for erythroid iron assimilation. Nature. 2006;440(7080):96–100.
  • Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142(1):24–38.
  • Wang Y, Langer NB, Shaw GC, et al. Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria. Exp Hematol. 2011;39(7):784–794.
  • Bishop DF, Henderson AS, Astrin KH. Human δ-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics. 1990;7(2):207–214.
  • An LL, Li G, Wu KF, et al. High expression of EDAG and its significance in AML. Leukemia. 2005;19(8):1499–1502.
  • Jiang J, Yu H, Shou Y, et al. Hemgn is a direct transcriptional target of HOXB4 and induces expansion of murine myeloid progenitor cells. Blood. 2010;116(5):711–719.
  • Zheng WW, Dong XM, Yin RH, et al. EDAG positively regulates erythroid differentiation and modifies GATA1 acetylation through recruiting p300. Stem Cells. 2014;32(8):2278–2289.
  • Zhao K, Zheng WW, Dong XM, et al. EDAG promotes the expansion and survival of human CD34 + cells. PLoS One. 2018;13(1):e0190794.
  • Karim S, Mirza Z, Chaudhary AG, et al. Assessment of radiation induced therapeutic effect and cytotoxicity in cancer patients based on transcriptomic profiling. Int J Mol Sci. 2016;17(2):250.
  • Li CY, Zhan YQ, Xu CW, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-κB. Cell Death Differ. 2004;11(12):1299–1308.
  • Fitzgibbon J, Katsanis N, Wells D, et al. Human guanylate kinase (GUK1): cDNA sequence, expression and chromosomal localisation. FEBS Lett. 1996;385(3):185–188.
  • Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell. 2014;15(2):169–184.
  • Xiang J, Wu DC, Chen Y, et al. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors. Blood. 2015;125(11):1803–1812.
  • Paulson RF, Hariharan S, Little JA. Stress erythropoiesis: definitions and models for its study. Exp Hematol. 2020;89:43–54.