772
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NFIL3 aggravates human coronary artery endothelial cell injury by promoting ITGAM transcription in Kawasaki disease

, , , , &
Article: 2277502 | Received 12 Jul 2023, Accepted 25 Oct 2023, Published online: 07 Nov 2023

References

  • Rife E, Gedalia A. Kawasaki disease: an update. Curr Rheumatol Rep. 2020;22:75), doi:10.1007/s11926-020-00941-4
  • Zhang D, Liu L, Huang X, et al. Insights into coronary artery lesions in Kawasaki disease. Front Pediatr. 2020;8:493), doi:10.3389/fped.2020.00493
  • Liu C, Yang D, Wang H, et al. MicroRNA-197-3p mediates damage to human coronary artery endothelial cells via targeting TIMP3 in Kawasaki disease. Mol Cell Biochem. 2021;476:4245–4263. doi:10.1007/s11010-021-04238-7
  • Zheng Y, Huang S, Zhang J, et al. Melatonin alleviates vascular endothelial cell damage by regulating an autophagy-apoptosis axis in Kawasaki disease. Cell Prolif. 2022;55:e13251), doi:10.1111/cpr.13251
  • Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochim Biophys Acta Biomembr. 2020;1862:183206), doi:10.1016/j.bbamem.2020.183206
  • Hao D, Liu R, Gao K, et al. Developing an injectable nanofibrous extracellular matrix hydrogel With an integrin αvβ3 ligand to improve endothelial cell survival, engraftment and vascularization. Front Bioeng Biotechnol. 2020;8:890), doi:10.3389/fbioe.2020.00890
  • Fagerholm SC, MacPherson M, James MJ, et al. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus. 2013;22:657–663. doi:10.1177/0961203313491851
  • Wu W, You K, Zhong J, et al. Identification of potential core genes in Kawasaki disease using bioinformatics analysis. J Int Med Res. 2019;47:4051–4058. doi:10.1177/0300060519862057
  • Reindel R, Baker SC, Kim KY, et al. Integrins alpha4 and alphaM, collagen1A1, and matrix metalloproteinase 7 are upregulated in acute Kawasaki disease vasculopathy. Pediatr Res. 2013;73:332–336. doi:10.1038/pr.2012.185
  • Woo JMP, Parks CG, Jacobsen S, et al. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J Intern Med. 2022;291:755–778. doi:10.1111/joim.13448
  • Nadkarni S, Dalli J, Hollywood J, et al. Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ Res. 2014;114:242–248. doi:10.1161/CIRCRESAHA.114.301374
  • Nagi-Miura N, Okuzaki D, Torigata K, et al. CAWS administration increases the expression of interferon γ and complement factors that lead to severe vasculitis in DBA/2 mice. BMC Immunol. 2013;14:44), doi:10.1186/1471-2172-14-44
  • Yin J, Zhang J, Lu Q. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases. Clin Immunol. 2017;180:5–10. doi:10.1016/j.clim.2017.03.013
  • Chen Z, Fan R, Liang J, et al. NFIL3 deficiency alleviates EAE through regulating different immune cell subsets. J Adv Res. 2022;39:225–235. doi:10.1016/j.jare.2021.10.011
  • Du J, Zheng L, Chen S, et al. NFIL3 and its immunoregulatory role in rheumatoid arthritis patients. Front Immunol. 2022;13:950144), doi:10.3389/fimmu.2022.950144
  • Demos C, Johnson J, Andueza A, et al. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med. 2022;9:979745), doi:10.3389/fcvm.2022.979745
  • McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American heart association. Circulation. 2017;135:e927–e999. doi:10.1161/CIR.0000000000000484
  • Xu M, Qi Q, Men L, et al. Berberine protects Kawasaki disease-induced human coronary artery endothelial cells dysfunction by inhibiting of oxidative and endoplasmic reticulum stress. Vascul Pharmacol. 2020;127:106660), doi:10.1016/j.vph.2020.106660
  • Wang X, Ding YY, Chen Y, et al. MiR-223-3p alleviates vascular endothelial injury by targeting IL6ST in Kawasaki disease. Front Pediatr. 2019;7:288), doi:10.3389/fped.2019.00288
  • Srivastava P, Bamba C, Pilania RK, et al. Exploration of potential biomarker genes and pathways in Kawasaki disease: An integrated in-silico approach. Front Genet. 2022;13:849834), doi:10.3389/fgene.2022.849834
  • Maiti AK, Kim-Howard X, Motghare P, et al. Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM. Hum Mol Genet. 2014;23:4161–4176. doi:10.1093/hmg/ddu106
  • Zhou M, Wang X, Shi Y, et al. Deficiency of ITGAM attenuates experimental abdominal aortic aneurysm in mice. J Am Heart Assoc. 2021;10:e019900.
  • Ramirez-Bello J, Sun C, Valencia-Pacheco G, et al. ITGAM is a risk factor to systemic lupus erythematosus and possibly a protection factor to rheumatoid arthritis in patients from Mexico. PLoS One. 2019;14:e0224543), doi:10.1371/journal.pone.0224543
  • Hu Q, Zhang S, Yang Y, et al. Extracellular vesicle ITGAM and ITGB2 mediate severe acute pancreatitis-related acute lung injury. ACS Nano. 2023;17:7562–7575. doi:10.1021/acsnano.2c12722
  • Intharanut K, Suttanon P, Nathalang O. Integrin subunit alpha M, ITGAM nonsynonymous SNP Is associated with knee osteoarthritis among Thais: A case-control study. Curr Issues Mol Biol. 2023;45(5):4168–4180. doi:10.3390/cimb45050265
  • Zhang QQ, Hu XW, Liu YL, et al. CD11b deficiency suppresses intestinal tumor growth by reducing myeloid cell recruitment. Sci Rep. 2015;5:15948), doi:10.1038/srep15948
  • Gu WB, Liu ZP, Zhou YL, et al. The nuclear factor interleukin 3-regulated (NFIL3) transcription factor involved in innate immunity by activating NF-kappaB pathway in mud crab Scylla paramamosain. Dev Comp Immunol. 2019;101:103452), doi:10.1016/j.dci.2019.103452
  • Kim HS, Sohn H, Jang SW, et al. The transcription factor NFIL3 controls regulatory T-cell function and stability. Exp Mol Med. 2019;51:1–15.
  • Shi Y, Yang S, Luo M, et al. Systematic analysis of coronary artery disease datasets revealed the potential biomarker and treatment target. Oncotarget. 2017;8:54583–54591. doi:10.18632/oncotarget.17426
  • Frontiers Editorial O. Retraction. NFIL3 facilitates neutrophil autophagy, neutrophil extracellular trap formation and inflammation during gout via REDD1-dependent mTOR inactivation. Front Med (Lausanne). 2023;10:1187721.
  • Schlenner S, Pasciuto E, Lagou V, et al. NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Ann Rheum Dis. 2019;78:342–349. doi:10.1136/annrheumdis-2018-213764
  • Yang W, Li J, Zhang M, et al. Elevated expression of the rhythm gene NFIL3 promotes the progression of TNBC by activating NF-kappaB signaling through suppression of NFKBIA transcription. J Exp Clin Cancer Res. 2022;41:67), doi:10.1186/s13046-022-02260-1
  • Zhuo H, Liu J. Nuclear factor interleukin 3 (NFIL3) participates in regulation of the NF-κB-mediated inflammation and antioxidant system in Litopenaeus vannamei under ammonia-N stress. Fish Shellfish Immunol. 2022;131:1192–1205. doi:10.1016/j.fsi.2022.11.028