2,553
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on characterization of BCR – ABL transcript variants for molecular monitoring of chronic myeloid leukemia phenotypes

, , &
Article: 2284038 | Received 30 Apr 2023, Accepted 02 Nov 2023, Published online: 20 Nov 2023

References

  • Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385(9976):1447–1459.
  • Tadwalkar S. The global incidence and prevalence of chronic myeloid leukemia over the next ten years (2017–2027). J Blood DisordTransfus. 2017;8:2155–2164.
  • Khazaal MS, Hamdan FB, Al-Mayah QS. Association of BCR/ABL transcript variants with different blood parameters and demographic features in Iraqi chronic myeloid leukemia patients. Mol Genet Genomic Med. 2019;7(8):e809.
  • Davis RL, Konopka JB, Witte ON. Activation of the C – ABL oncogene by viral transduction or chromosomal translocation generates altered C – ABL proteins with similar in vitro kinase properties. Mol Cell Biol. 1985;5(1):204–213.
  • Bauer S, Romvari E. Interpreting molecular monitoring results and international standardization in chronic myeloid leukemia. J Adv Pract Oncol. 2012;3(3):151.
  • Javed A, Mukhtar H, Kubra K, et al. Detection of BCR–ABL fusion gene and its transcript variants in chronic myeloid leukaemia patients–a multi – comparison study. JPMA. 2020;70(1748):10–5455.
  • Bavaro L, Martelli M, Cavo M, et al. Mechanisms of disease progression and resistance to tyrosine kinase inhibitor therapy in chronic myeloid leukemia: an update. Int J Mol Sci. 2019;20(24):6141.
  • Bennour A, Saad A, Sennana H. Chronic myeloid leukemia: relevance of cytogenetic and molecular assays. Crit Rev Oncol Hematol. 2016;97:263–274.
  • Sholikah, T.A. (2017). Fusion gene BCR-ABL: from etiopathogenesis to the management of chronic myeloid leukemia. JKKI: Jurnal Kedokteran dan Kesehatan Indonesia: 29-37.
  • Chootawiriyasakul K, Chansung K. Multiplex PCR for identifying BCR-ABL fusion transcript types in Northeastern Thailand chronic myeloid leukemia patients. Srinagarind Med J. 2020;35(6):720–725.
  • Dong Y, Shi O, Zeng Q, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 2020;9(1):1–11.
  • Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25(1):85–109.
  • Rowley JD. A story of swapped ends. Science. 2013;340(6139):1412–1413.
  • Haider MZ, Anwer F. Genetics, Philadelphia chromosome [Updated 2023 July 17]. In: Statpearls [internet]. Treasure Island (FL): StatPearls Publishing; 2023 January. Available from: https://www.ncbi.gov/books/NBK560689.
  • Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood J Am Soc Hematol. 2000;96(10):3343–3356.
  • Sattler M, Griffin JD. Mechanisms of transformation by the BCR/ABL oncogene. Int J Hematol. 2001;73(3):278–291.
  • Kang ZJ, Liu YF, Xu LZ, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35(1):1–15.
  • Radich JP. Another Philadelphia story. Haematologica. 2022;107(3):566.
  • Avelino KY, Silva RR, da Silva Junior AG, et al. Smart applications of bionanosensors for BCR/ABL fusion gene detection in leukemia. J King Saud Univ-Sci. 2017;29(4):413–423.
  • Ihle JN, Thierfelder W, Teglund S, et al. Signaling by the cytokine receptor superfamily a. Ann N Y Acad Sci. 1998;865(1):1–9.
  • Aaronson DS. Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296:1653–1655.
  • Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by BCR/ABL. J Exp Med. 1996;183(3):811–820.
  • Shuai K, Halpern J, Ten Hoeve J, et al. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene. 1996;13(2):247–254.
  • Bromberg J, Darnell JE. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19(21):2468–2473.
  • Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/AKT-dependent pathway. EMBO J. 1997;16(20):6151–6161.
  • King D, Yeomanson D, Bryant HE. PI3king the lock: targeting the PI3 K/AKT/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 2015;37(4):245–251.
  • Puil L, Liu JIAXIN, Gish G, et al. BCR-ABL oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 1994;13(4):764–773.
  • Chu S, Li L, Singh H, et al. BCR-tyrosine 177 plays an essential role in Ras and AKT activation and in human hematopoietic progenitor transformation in chronic myelogenous leukemia. Cancer Res. 2007;67(14):7045–7053.
  • Steelman LS, Franklin RA, Abrams SL, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25(7):1080–1094.
  • Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009;6(10):587–595.
  • Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol. 2015;94(2):107–121.
  • Airiau K, Mahon FX, Josselin M, et al. Pi3 K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor. Cell Death Dis. 2013;4(10):e827–e827.
  • Bedi A, Zehnbauer BA, Barber JP, et al. Inhibition of apoptosis by BCR –ABL in chronic myeloid leukemia. Blood. 1994;83(8):2038–2044.
  • Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J (Sudbury, Mass.). 2016;22(1):40.
  • Frazer R, Irvine AE, McMullin MF. Chronic myeloid leukaemia in the 21st century. Ulster Med J. 2007;76(1):8.
  • Salesse S, Verfaillie CM. BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 2002;21(56):8547–8559.
  • Dixon AS, Constance JE, Tanaka T, et al. Changing the subcellular location of the oncoprotein BCR-ABL using rationally designed capture motifs. Pharm Res. 2012;29(4):1098–1109.
  • Sharma P, Kumar L, Mohanty S, et al. Response to imatinib mesylate in chronic myeloid leukemia patients with variant BCR –ABL fusion transcripts. Ann Hematol. 2010;89(3):241–247.
  • Valent P, Lion T, Wolf D, et al. Diagnostic algorithms, monitoring, prognostication, and therapy in chronic myeloid leukemia (CML): a proposal of the Austrian CML platform. Wiener KlinischeWochenschrift. 2008;120(21):697–709.
  • Tanaka MF, Kantarjian H, Cortes J, et al. Treatment options for chronic myeloid leukemia. Expert Opin Pharmacother. 2012;13(6):815–828.
  • Innes AJ, Milojkovic D, Apperley JF. Allogeneic transplantation for CML in the TKI era: striking the right balance. Nat Rev Clin Oncol. 2016;13(2):79–91.
  • Goldman JM. How I treat chronic myeloid leukemia in the imatinib era. Blood J Am Soc Hematol. 2007;110(8):2828–2837.
  • Perrotti D, Jamieson C, Goldman J, et al. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254–2264.
  • Mendizabal AM, Garcia-Gonzalez P, Levine PH. Regional variations in age at diagnosis and overall survival among patients with chronic myeloid leukemia from low- and middle-income countries. Cancer Epidemiol. 2013;37(3):247–254.
  • Zhen C, Wang YL. Molecular monitoring of chronic myeloid leukemia: international standardization of BCR–ABL1 quantitation. J Mol Diagn. 2013;15(5):556–564.
  • Fernandes A, Shanmuganathan N, Branford S. Genomic mechanisms influencing outcome in chronic myeloid leukemia. Cancers (Basel). 2022;14(3):620.
  • Hughes T, Branford S. Molecular monitoring of chronic myeloid leukemia. In: Seminars in hematology. WB Saunders; 2003. 40: p. 62–68.
  • Salmon M, White HE, Cross NC, et al. Standardization of molecular monitoring for chronic myeloid leukemia: 2021 update. In: Chronic myeloid leukemia. Cham: Springer; 2021. p. 105–117.
  • White HE, Matejtschuk P, Rigsby P, et al. Establishment of the first World Health Organization international genetic reference panel for quantitation of BCR-ABL mRNA. Blood J Am Soc Hematol. 2010;116(22):e111–e117.
  • Cross NC, White HE, Evans PA, et al. Consensus on BCR–ABL 1 reporting in chronic myeloid leukaemia in the UK. Br J Haematol. 2018;182(6):777–788.
  • Nachi M, Kihel I, Entasoltane B, et al. Impact of the major BCR–ABL1 transcript type on clinical and biological parameters and molecular response in patients with chronic myeloid leukemia. Hematology/Oncology and Stem Cell Therapy. 2022.15:Iss.2, Article 9.
  • Cross NC, Melo JV, Feng L, et al. An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia. 1994;8(1):186–189.
  • Cross NC. Importance of BCR/ABL1 transcript type in CML. Clin Lymphoma Myeloma Leukemia. 2021;21:S20–S22.
  • Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood, J Am Soc Hematol. 2013;122(6):872–884.
  • Marum JE, Branford S. Current developments in molecular monitoring in chronic myeloid leukemia. Ther Adv Hematol. 2016;7(5):237–251.
  • Dufresne SD, Belloni DR, Levy NB, et al. Quantitative assessment of the BCR –ABL transcript using the Cepheid Xpert BCR –ABL monitor assay. Arch Pathol Lab Med. 2007;131(6):947–950.
  • Enjeti A, Granter N, Ashraf A, et al. A longitudinal evaluation of performance of automated BCR –ABL1 quantitation using cartridge-based detection system. Pathology. 2015;47(6):570–574.
  • Kongruang A, Limsuwanachot N, Magmuang S, et al. Committed change of real-time quantitative PCR to droplet digital PCR for monitoring BCR–ABL1 transcripts in tyrosine kinase inhibitor treated CML. Hematology. 2023;28(1):2256199.
  • Melo JV. 2 BCR-ABL gene variants. Baillière’s Clin Haematol. 1997;10(2):203–222.
  • Hanfstein B, Lauseker M, Hehlmann R, et al. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica. 2014;99(9):1441.
  • Paramita DK, Hutajulu SH, Syifarahmah A, et al. BCR-ABL gene transcript types of patients with chronic myelogenous leukemia in Yogyakarta, Indonesia. Asian Pac J Cancer Prev: APJCP. 2020;21(6):1545.
  • Amin H, Ahmed S. Characteristics of BCR–ABL gene variants in patients of chronic myeloid leukemia. Open Med. 2021;16(1):904–912.
  • Bennour A, Ouahchi I, Achour B, et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med Oncol. 2013;30:1–6.
  • Balatzenko G, Vundinti BR, Margarita G. Correlation between the type of BCR-ABL transcripts and blood cell counts in chronic myeloid leukemia – a possible influence of MDR1 gene expression. Hematol Rep. 2011;3(1):e3.
  • Burmeister T, Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR–ABL fusion transcripts. Leuk Res. 2008;32(4):579–585.
  • Qin YZ, Jiang Q, Jiang H, et al. Prevalence and outcomes of uncommon BCR-ABL 1 fusion transcripts in patients with chronic myeloid leukaemia: data from a single centre. Br J Haematol. 2018;182(5):693–700.
  • Stella S, Massimino M, Tirro E, et al. Detection and clinical implications of a novel BCR–ABL1 e12a2 insertion/deletion in a cml patient expressing the e13a2 isoform. Anticancer Res. 2019;39(12):6965–6971.
  • Osman AEG, Deininger MW. Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 2021;49:100825.
  • D’Adda M, Farina M, Schieppati F, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019;125(10):1674–1682.
  • Jain P, Kantarjian H, Patel KP, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood, J Am Soc Hematol. 2016;127(10):1269–1275.
  • Farhat-Maghribi S, Habbal W, Monem F. Frequency of BCR-ABL transcript types in Syrian CML patients. J Oncol. 2016;2016:8420853.