28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regulation of STAT5 phosphorylation and interaction with SHP1 by lnc-AC004893, a long non-coding RNA overexpressed in myeloproliferative neoplasms

, , , , &
Article: 2375045 | Received 12 Dec 2022, Accepted 25 Jun 2024, Published online: 16 Jul 2024

References

  • Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129(12):1607–1616. doi:10.1182/blood-2016-10-696005
  • Strickland M, Quek L, Psaila B. The immune landscape in BCR-ABL negative myeloproliferative neoplasms: inflammation, infections and opportunities for immunotherapy. Br J Haematol. 2022;196(5):1149–1158. doi:10.1111/bjh.17850
  • Rumi E, Cazzola M. Introduction to a review series on myeloproliferative neoplasms. Blood. 2017;129(6):659–659. doi:10.1182/blood-2016-12-756619
  • James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148. doi:10.1038/nature03546
  • Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–2390. doi:10.1056/NEJMoa1311347
  • Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270, doi:10.1371/journal.pmed.0030270
  • Walz C, Ahmed W, Lazarides K, et al. Essential role for STAT5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2V617F in mice. Blood. 2012;119(15):3550–3560. doi:10.1182/blood-2011-12-397554
  • Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–181. doi:10.1016/j.cell.2011.03.014
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.
  • Wang X, Hua J, Li J, et al. Mechanisms of non-coding RNA-modulated alternative splicing in cancer. RNA Biol. 2022;19(1):541–547. doi:10.1080/15476286.2022.2062846
  • Zhang H, Yu L, Chen J, et al. Role of metabolic reprogramming of long non-coding RNA in clear cell renal cell carcinoma. J Cancer. 2022;13(2):691–705. doi:10.7150/jca.62683
  • Yoon JH, Abdelmohsen K, Kim J, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939, doi:10.1038/ncomms3939
  • Feng Y, Shen Y, Chen H, et al. Expression profile analysis of long non-coding RNA in acute myeloid leukemia by microarray and bioinformatics. Cancer Sci. 2018;109(2):340–353. doi:10.1111/cas.13465
  • Yousefi H, Purrahman D, Jamshidi M, et al. Long non-coding RNA signatures and related signaling pathway in T-cell acute lymphoblastic leukemia. Clin Transl Oncol. 2022;24(11):2081–2089. doi:10.1007/s12094-022-02886-9
  • Shi J, Ding W, Lu H. Identification of long non-coding RNA SNHG family as promising prognostic biomarkers in acute myeloid leukemia. Onco Targets Ther. 2020;13:8441–8450. doi:10.2147/OTT.S265853
  • Akada H, Akada S, Gajra A, et al. Efficacy of vorinostat in a murine model of polycythemia vera. Blood. 2012;119(16):3779–3789. doi:10.1182/blood-2011-02-336743
  • Tsuruyama T, Aini W, Hiratsuka T. Reassessment of H&E stained clot specimens and immunohistochemistry of phosphorylated STAT5 for histological diagnosis of MDS/MPN. Pathology. 2015;47(7):673–677.
  • Han Y, Amin HM, Franko B, et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood. 2006;108(8):2796–2803. doi:10.1182/blood-2006-04-017434
  • Chim CS, Wong AS, Kwong YL. Epigenetic dysregulation of the JAK/STAT pathway by frequent aberrant methylation of SHP1 but not SOCS1 in acute leukaemias. Ann Hematol. 2004;83(8):527–532.
  • Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-MYC super-enhancer. BMC Mol Biol. 2016;17:10, doi:10.1186/s12867-016-0063-y
  • Matsumura I, Kitamura T, Wakao H, et al. Transcriptional regulation of the cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J. 1999;18(5):1367–1377. doi:10.1093/emboj/18.5.1367
  • Nakaya Y, Shide K, Niwa T, et al. Efficacy of NS-018, a potent and selective JAK2/SRC inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Blood Cancer J. 2011;1(7):e29, doi:10.1038/bcj.2011.29
  • Xiao W, Ando T, Wang HY, et al. Lyn- and PLC-β3–dependent regulation of SHP-1 phosphorylation controls STAT5 activity and myelomonocytic leukemia-like disease. Blood. 2010;116(26):6003–6013. doi:10.1182/blood-2010-05-283937
  • Liu S, Zhu J, Jiang T, et al. Identification of lncRNA MEG3 binding protein using MS2-tagged RNA affinity purification and mass spectrometry. Appl Biochem Biotechnol. 2015;176(7):1834–1845. doi:10.1007/s12010-015-1680-5
  • Sachs Z, Been RA, DeCoursin KJ, et al. Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency. Haematologica. 2016;101(10):1190–1199. doi:10.3324/haematol.2015.136002
  • Warsch W, Walz C, Sexl V. JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood. 2013;122(13):2167–2175. doi:10.1182/blood-2013-02-485573
  • Girardot M, Pecquet C, Chachoua I, et al. Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation. Oncogene. 2015;34(10):1323–1332. doi:10.1038/onc.2014.60
  • Hantschel O, Warsch W, Eckelhart E, et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol. 2012;8(3):285–293. doi:10.1038/nchembio.775
  • Nishioka C, Ikezoe T, Yang J, et al. Multitargeted tyrosine kinase inhibitor stimulates expression of IL-6 and activates JAK2/STAT5 signaling in acute myelogenous leukemia cells. Leukemia. 2009;23(12):2304–2308. doi:10.1038/leu.2009.163
  • Sprissler C, Belenki D, Maurer H, et al. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J. 2014;4(8):e240, doi:10.1038/bcj.2014.53
  • Takeda Y, Nakaseko C, Tanaka H, et al. Direct activation of STAT5 by ETV6-LYN fusion protein promotes induction of myeloproliferative neoplasm with myelofibrosis. Br J Haematol. 2011;153(5):589–598. doi:10.1111/j.1365-2141.2011.08663.x
  • Grimwade LF, Happerfield L, Tristram C, et al. Phospho-STAT5 and phospho-Akt expression in chronic myeloproliferative neoplasms. Br J Haematol. 2009;147(4):495–506. doi:10.1111/j.1365-2141.2009.07870.x
  • Hadzijusufovic E, Keller A, Berger D, et al. STAT5 is expressed in CD34(+)/CD38(-) stem cells and serves as a potential molecular target in Ph-negative myeloproliferative neoplasms. Cancers (Basel). 2020;12(4):1021, doi:10.3390/cancers12041021
  • Richine BM, Virts EL, Bowling JD, et al. Syk kinase and Shp2 phosphatase inhibition cooperate to reduce FLT3-ITD-induced STAT5 activation and proliferation of acute myeloid leukemia. Leukemia. 2016;30(10):2094–2097. doi:10.1038/leu.2016.131
  • Shide K, Kameda T, Markovtsov V, et al. R723, a selective JAK2 inhibitor, effectively treats JAK2V617F-induced murine myeloproliferative neoplasm. Blood. 2011;117(25):6866–6875. doi:10.1182/blood-2010-01-262535
  • Lee S, Wong H, Castiglione M, et al. JAK2V617F mutant megakaryocytes contribute to hematopoietic aging in a murine model of myeloproliferative neoplasm. Stem Cells. 2022;40(4):359–370. doi:10.1093/stmcls/sxac005
  • Lyu Y, Lou J, Yang Y, et al. Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and – independent pathways. Leukemia. 2017;31(12):2543–2551. doi:10.1038/leu.2017.116